چکیده
زمینه و هدف: آلودگی به فلزات سنگین یکی از مشکلات زیست محیطی و یکی از نگرانی‌های مهم بهداشت مواد غذایی به شمار می‌آید. مصرف چای به عنوان یک آشامیدنی دلپذیر و اعات غذایی در بین ایرانیان رواج دارد. وجود این فلزات در چای می‌تواند یکی از منابع مهم آلودگی در مواد غذایی به شمار آید. هدف از انجام این مطالعه، بررسی میزان سرب، کروم، نیکل و مس در نمونه‌های خشک چای سیاه در پایتخت تهران بود.
مواد و روش‌ها: این مطالعه یک پژوهش مقطعی است که در سال ۱۳۸۸ انجام گرفت. ابتدا یازده نوع چای سیاه بر مصرف از معاون‌های سطح شهر تهران جمع‌آوری و از هر نوع چای، چهار نمونه تهیه گردید. حجم مشخصی از نمونه‌ها ابتدا توسط روش هضم مرطوب با اسیدتتریک و اسیدکلریدیک هضم شده و سپس محلول‌های حاصلی از نظر وجود این عناصر مورد آزمایش قرار گرفتند و غلظت فلزات سنگین آن با کمک دستگاه طیف سنج جذب آنی با شعله تعبیه گردید.
نتیجه‌گیری: میزان سرب و نیکل بیش از مقدار تعبیه شده و کروم و مس کمتر از حد مشخص شده توسط وزارت بهداشت ایران در نمونه‌های چای خشک به دست آمد. با افزایش مصرف غذایی آلودگی به فلزات سنگین و به دلیل خاصیت تجمع‌پذیری این فلزات بر بافت بدن و اثرات سه‌ان بر انسان بهتر است از محققان پاک‌تر استفاده گردد.
واژه‌های کلیدی: فلزات سنگین، چای، جبه اتمی، ایران
مقدمہ
انتشار فلزات سنگین در محیط زیست ناتی از افزایش جمعیت، توسعه و صنعتی شدن است و یکی از مسائل زیست محیطی عصر حاضر می‌باشد. از منابع انتشار فلزات سنگین به محیط می‌توان عوامل صنعتی، ترافیک، استفاده از سوخته‌فیسی و استفاده از کودهای سفانه را نام برد. تجویز این فلزات در حیوانات و گیاهان علاوه بر آسیب‌های جدی بر سلامت این موجودات، مصرف فراورده‌های آنها را به صورت کننده یعنی انسان‌نیز مخاطره می‌کند. این امر ترتیبی تام فعل فلزات سنگین در بدن انسان و اثرات آن بر جسم گذاشته است. از آنجا که می‌توان به اختلال در سیستم عصبی، کلیه و گردش خون اشاره نمود [1]. فلزات سنگین می‌توانند وارد مواد غذایی نظیر چای و نان گردو و در طبق روش استاندارد Association of Official Analytical Chemists (AOAC) به منظور خاکسازی‌سازی تا دمای 450 درجه سانتی‌گراد به مدت 3 ساعت در کوره قرار (Kabak Chp) (قرار داده و سپس 5 میلی‌لیتر اسید کلریدیک 6 مولار درون بیوت ریخته و تا اوج آب محصول شرکت حرارت داده شد. نمونه‌ها از صاف و ناحیه با قطر 24/5 میکرومتری غیر داده شدند و به باقی‌مانده محلول اسیدینتریک 1/0 مولار اضافه گردید و در انتها با آب مقطع دیوینژه شده به حجم 25 میلی‌لیتر رسیده شدند [6]. به منظور تعیین میزان فلزات سنگین در نمونه‌ها از دستگاه طیف‌سنج جذب اتمی مدل Shimadzu-AA-670 استفاده گردید و آسپره کردن محلول به مدت 30 ثانیه انجام گرفت. آب دیوینژه از دستگاه Q3- Direct می‌تواند از شرکت Merck مصرفی باشد. آن‌ها می‌توانند مسائل و سر بر اب تربیت برای پیش‌بینی و 0.74 را داشته باشند.

مواد و روش‌ها
ابن مطالعه مقیطی در باره رضوان و ناحیه سال 1388 انجام گرفت. ابتدا 12 نوع چای بر مصرف از مزارع‌های سطح شهر تهران جمع‌آوری و از هر نوع چای شکر 4 نمونه تهیه گردید. جهت شستن و رفع ادکلنی احتمالی، وسایل آزمایشگاهی با اسیدینتریک 5% ونی - حجم شستشو شده و سپس با وسیله آب یکشی و در آون خشک گردیده. برای آماده‌سازی نمونه‌ها 1 گرم چای درون بوته چینی ریخته و طبق روش استاندارد.
بحث

در این مطالعه بهبود در نمونه‌های چای 2/7 میلی‌گرم بر کیلوگرم به دست آمد. در مقدار بیش از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران، 1 میلی‌گرم بر کیلوگرم می‌باشد [2]. در نیم‌نام نمونه‌های سرب موجود در چای خشک را بهبود یافت.

جدول 1 - میانگین و انحراف معیار میزان سرب کرم، مس نیکل در نمونه‌های چای سیاه (بررسی میلی‌گرم بر کیلوگرم)

<table>
<thead>
<tr>
<th>نام فلز</th>
<th>مس</th>
<th>کروم</th>
<th>نیکل</th>
<th>انحراف معیار ± میانگین</th>
<th>انحراف معیار ± میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>طلا</td>
<td>1/9±0/98</td>
<td>1/9±0/58</td>
<td>1/9±0/58</td>
<td>3±9/8±1/11</td>
<td>3±9/8±1/11</td>
</tr>
<tr>
<td>کلم مورچه‌ای</td>
<td>0/5±0/65</td>
<td>0/5±0/66</td>
<td>0/5±0/66</td>
<td>14±7/8±1/33</td>
<td>14±7/8±1/33</td>
</tr>
<tr>
<td>شیلن</td>
<td>10±1/15</td>
<td>7/8±1/11</td>
<td>7/8±1/11</td>
<td>5±1/1±1/98</td>
<td>5±1/1±1/98</td>
</tr>
<tr>
<td>دوجمال</td>
<td>4/95±1/35</td>
<td>6/75±0/9</td>
<td>6/75±0/9</td>
<td>4/3±8/1±5/4</td>
<td>4/3±8/1±5/4</td>
</tr>
<tr>
<td>سیلن</td>
<td>3±0/13</td>
<td>3±0/3</td>
<td>3±0/3</td>
<td>3±0/4±8/9</td>
<td>3±0/4±8/9</td>
</tr>
<tr>
<td>احمد</td>
<td>2/35±1/6</td>
<td>18/1±5/4</td>
<td>18/1±5/4</td>
<td>9±6±1/4±74</td>
<td>9±6±1/4±74</td>
</tr>
<tr>
<td>محمود</td>
<td>1/2±6/5</td>
<td>3±8/5±0/3</td>
<td>3±8/5±0/3</td>
<td>1±1/9±1/53</td>
<td>1±1/9±1/53</td>
</tr>
<tr>
<td>دوجکتی</td>
<td>2/36±1/8</td>
<td>3±9/7±2/4</td>
<td>3±9/7±2/4</td>
<td>2±1±6/4±68</td>
<td>2±1±6/4±68</td>
</tr>
<tr>
<td>گلستان</td>
<td>3±4±1/6</td>
<td>3±4±1/6</td>
<td>3±4±1/6</td>
<td>3±4±1/6</td>
<td>3±4±1/6</td>
</tr>
<tr>
<td>کلام</td>
<td>2/4±1/15</td>
<td>3±1±1/8</td>
<td>3±1±1/8</td>
<td>3±1±1/8</td>
<td>3±1±1/8</td>
</tr>
<tr>
<td>کیسه‌ای احمد</td>
<td>1/2±6/5</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
</tr>
<tr>
<td>میانگین</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
<td>2±8/5±1/10</td>
</tr>
</tbody>
</table>

بحث

در این مطالعه، میزان سرب در نمونه‌های چای 2/7 میلی‌گرم بر کیلوگرم به دست آمد و این مقدار بیش از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران بینبینی می‌باشد [2]. در نیم‌نام نمونه‌های سرب موجود در چای خشک را بهبود یافت.

بحث

در این مطالعه، میزان سرب در نمونه‌های چای 2/7 میلی‌گرم بر کیلوگرم به دست آمد و این مقدار بیش از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران بینبینی می‌باشد [2]. در نیم‌نام نمونه‌های سرب موجود در چای خشک را بهبود یافت.

بحث

در این مطالعه، میزان سرب در نمونه‌های چای 2/7 میلی‌گرم بر کیلوگرم به دست آمد و این مقدار بیش از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران بینبینی می‌باشد [2]. در نیم‌نام نمونه‌های سرب موجود در چای خشک را بهبود یافت.
محمد ملکوتیان و حمیدان

مس در چای کمتر از حد مجاز تعیین شده توسط وزارت بهداشت می‌باشد ولی قطعات سرب از حد مجاز تعیین شده توسط وزارت بهداشت بیشتر بود. بهنیه باید متد کردند میزان این فلات سنگین در چای دم کرده به میزان قابل ملاحظه‌ای کمتر از قطعات این فلات در چای خشک می‌باشد. همچنین درصد فلات سنگین در دسترس برای جذب در دسگاه گازش متفاوت است. سهم نوشیدنی چای در جذب مواد غذایی به خویی مشخص نشد. است از آنجا که دسترس یافته زیستی بسیاری از قطعات در معده مرتب PH چای ناشناخته‌است و به عاملی چون PH متوسط "(2) می‌توان نتیجه گرفت که میزان جذب این فلات در بدن بسیار کاهش می‌یابد. (1) و همکاران Matsuura کاهش بیش از 80% قطعات سنگین را از چای خشک به چای دم کرده اعلام نمودند (9) با توجه به این نکات می‌توان نتیجه گرفت که ترکیب جای دارال متفاوت در طی رشد و سپس در مراحل گازش در کارخانه دچار آلودگی به فلات سنگین می‌شود ویلی مشاهده این فلات در چای دم کشیده بسیار کاهش یافته و همچنین مقدار کمتری از این فلات در جذب بدن می‌شود. در مجموع نتایج این تحقیق نشان داد که می‌توان بدون نگرانی از مسمومیت به وسیله عناصر مورد بررسی، به طور معادل برای یه‌گلیوگریز از عنصر خفیف موجود از آن به عنوان یک آرامش‌بخش می‌تواند استفاده قرار گیرد. ولی با توجه به افراطی انتشار فلات سنگین در محیط زیست و در بی‌تجمع این فلات در کیهان، لازم است انتظار گیری‌های مستمر در خصوص میزان فلات سنگین در منابع غذایی صورت گیرد و سپس با مقایسه حالت‌های آستانه این فلات در مواد غذایی، اقدامات کنترلی جهت پیشگیری از انتشار فلات سنگین در محیط زیست به عمل آید. از می‌شود که قطعات این فلات در نمونه‌های چای بیش از مقدار استاندارد است. مس یک فلت اصلی در چای می‌باشد. حداکثر قطعات مجاز در چای 150 میلی‌گرم بر کیلوگرم توسط وزارت بهداشت تعیین شده است (2) میانگین قطعات مس در این مطالعه 68/29/82 میلی‌گرم بر کیلوگرم بود. در مطالعات انجام شده در هند، چین و ایران میانگین قطعات مس در چای به ترتیب 0/5، 7/42 و 0/26 میلی‌گرم بر کیلوگرم گزارش شده است (5-6) که در تمام موارد قطعات مس با پایین تر از حداکثر مجاز تعیین شده توسط وزارت بهداشت برای چای می‌باشد و نشان می‌دهد محتوای مس در چای خشک در کلیه نمونه‌ها در سطح ایمن قرار دارد. قطعات سنگین در این مطالعه 19/9119 میلی‌گرم بر کیلوگرم می‌باشد. نیکل یک فلت سری است و هم‌اکنون حد مجازی از قطعات آن در چای قابل قبول نمی‌باشد. قطعات نیکل را در چای 0/26-20/6 میلی‌گرم بر کیلوگرم گزارش کرده است (8). قطعات کروم در این مطالعه 58/56 میلی‌گرم بر کیلوگرم بود. میزان کروم در چای بستگی زیادی به فرایند تولید و کارخانه فراوری از دارد (5) در مطالعاتی در هند قطعات کروم در چای 0/12/4 میلی‌گرم بر کیلوگرم گزارش شده است (7).

نتیجه‌گیری

در این مطالعه نشان داد که کم‌کم‌شک محتوای فلات سنگین چون مس، نیکل، کروم و سرب است. قطعات...
اشکار و قدردانی

این پژوهش با حمایت مالی معلوت تحقیقات و فناوری دانشگاه
علوم پزشکی کرمان شکل گرفته است. پژوهشگران از کمیته تحقیقات
پیشانی محلی دانشگاه علوم پزشکی کرمان که با تصویب طرح مذکور
راه را بر انجام این هموار نمودند تشکر می‌مایند.

References

[1] Shuklasr P. Absorption of Cu(II), Ni (II), and Zn (II) on
modified jute fibers. J Bio resource Technology

Z, Samiei Z, Nazari F. Concentration and Health
Risk of Heavy Metals in Tea Samples Marketed in

Evaluation of Aluminum in Iranian Consumed tea.
Knowledge & Health 2008; 3(2):45-9. [Farsi]

[4] Qin F, Chen W. Lead and copper levels in tea samples
marketed in Beijing China. Bull Environ Contam

[5] Seenivasan S, Manikandan N, Muraleedharan N,
Selvasundaram R. Heavy metal content of black teas

Standard guide for preparation of biological samples
for inorganic chemical analysis. Annual Book of
ASTM. USA: J Pennsylvania 1999.

[7] Zazouli MA, Bandpei AM, Malek A, Saberian M,
Ilanoo H. Determination of cadmium and lead
contents in Black Tea and Tea liquor from Iran. Asia

study using trace element concentrations and chemo
metrics approach to determine the geological origin
of tea. J Analytical Atomic Spectroscopy 1998; 113:
521-5.

H. Multiemnt determination and speculation of
major- to- trace elements in black tea leaves by ICP-
AES and ICP- MS with the aid of size exclusionchro-
A Survey on Pb, Cr, Ni and Cu Concentrations in Tehran Consumed Black Tea: A Short Report

M. Malakootian¹, M. Mesreghani², M. Danesh Pazhoo³

Received: 18/01/10 Sent for Revision: 27/02/10 Received Revised Manuscript: 09/10/10 Accepted: 24/10/10

Background and Objectives: Heavy metal pollution has always been a major type of environmental contamination and a main concern for food health. Tea is the most popular beverage in Iran and the presence of heavy metal in tea has received special attention because of their direct effect on health. The aims of this study were to measure the concentrations of Pb, Cr, Ni and Cu in consumed tea.

Materials and Methods: A cross-sectional study was designed for this research. Eleven type of the most widely consumed brands of dry black tea were purchased from local market in Tehran. Certain volumes of four samples of each brand were collected and digested with Nitric acid and Chloridric acid using wet digestion method. The final solution of digestion was used to determine the level of these metals. Heavy metal contents in each sample were determined by atomic absorption spectrometry.

Results: The result showed that the mean concentrations of Pb, Cr, Cu and Ni in tea samples were 6.97±4.78, 5.75±1.08, 23.85±9.68, 2.91±1.9 (mg/kg), respectively. The maximum concentrations of Pb, Cr, Cu and Ni in tea samples were recorded for Ahmad tea Bag, Shilan, Golaby and dochakoshi, respectively.

Conclusion: The results indicated that Pb and Ni concentrations in the black tea were higher than the permissible limit for the human foods, while for the other heavy metals, the amounts were lower than that. Regarding increasing trend of food sources, contamination with heavy metals and also due to their bioaccumulation in human body and the subsequent health risks, it is recommended to control these products.

Key words: Heavy metals, Tea, Atomic absorption, Iran

Funding: This research was funded by Kerman University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics committee of Kerman University of Medical Sciences approved the study.

1- Professor, Dep. of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
Corresponding Author, Tel: (0341)3205074, Fax: (0341)3205000, Email:m.malakootian@yahoo.com
2- Msc student of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
3- Bs of Practical Chemistry, Faculty, of Dentistry, Kerman University of Medical Sciences, Kerman, Iran