چکیده
زمینه و هدف: آموزش به فلزات سنگین یکی از مشکلات زیست محیطی و یکی از تراکم‌های مهم بهداشت مواد غذایی به شمار می‌آید. مصرف چای به عنوان یک آشامیدنی دل‌به‌دار و عادت غذایی در بین ایرانیان روند دارد. وجود این فلزات در چای موادی که از منابع مهم آلودگی در مواد غذایی به شمار آید. هدف از انجام این مطالعه بررسی میزان این مواد غذایی، کرم، نیکل و مس در نمونه‌های خشک چای سیاه در یزد تهران بود.
مواد و روش‌ها: این مطالعه یک پژوهش مقطعی است که در سال 1388 انجام گرفت. ابتدا بررسی نوع چای سیاه آموزشی و مصرف از معادلات سطح شهر تهران جمع‌آوری و از هر نوع چای، جهت انواع مورد تحقیق دسته‌بندی گردید. حجم مشخصی از نمونه‌ها ابتدا توسط روش هضم مرطوب با استدلال‌بردارک نتایج درک و سپس محلول‌های حاصل از نظر وجود این عناصر مورد آزمایش قرار گرفتند و غلظت فلزات سنگین این یک کمک دستگاه طرف سنج جذب امتی با شعله تعمیم گردید.
یافته‌ها: ردایی‌های غلظت سنگین این یک قابلیت تحقیق با ترتیب 10/09/47 تا 1/7/05/19 میلی‌گرم بر کیلوگرم بود. با توجه به اینگونه داده‌ها در این نمونه‌ها وجود این عناصر چای خشک کمتر از در چای کیسه‌ای احمد، شیلات، گلابی و دوچکشی وجود داشت.
نتیجه‌گیری: میزان کرم و نیکل بیش از مقدار تعیین شده و کرم و مس کمتر از حد مشخص شده توسط وزارت بهداشت ایران در نمونه‌های چای خشک به دست آمد. با افزایش منابع غذایی آلوده به فلزات سنگین و به دلیل خاصیت تجمع‌پذیری این فلزات بیافتش دسته‌بندی افزایش و افزایش چای خشک و جذب اتمی ایران
واژه‌های کلیدی: فلزات سنگین، چای، جذب اتمی، ایران

م.ملاکوئیان، مریم مصرف‌کننده، محمد دانشجوی (2019). بررسی میزان سرمای کرم، کرم، نیکل و مس در چای سیاه مصرفی تهران. مجله دانشگاه علوم پزشکی رفسنجان، 1390، 1382-1383.

1- م. ملاکوئیان، مریم مصرف‌کننده (2019). بررسی میزان سرمای کرم، کرم، نیکل و مس در چای سیاه مصرفی تهران. مجله دانشگاه علوم پزشکی رفسنجان، 1390، 1382-1383.

2- دانشجوی کارشناس ارشد مهندسی بهداشت محیط، دانشگاه علوم پزشکی کرمان

3- کارشناس گروه آموزشی شیمی کاربردی، دانشگاه داروسازی، دانشگاه علوم پزشکی کرمان
انتشار فلزات سنگین در محیط زیست ناشی از افزایش گیاهان و چگیستن شدن است و یکی از عوامل زیست محیطی عصار حرارتی می‌باشد. از منابع انتشار فلزات سنگین به محیط می‌توان عوامل صحی و تراکم استفاده از سوختهای فسیلی و استفاده از کودهای فسفات را نام برد. تجمع این فلزات در حیوانات و گیاهان علاوه بر اسپیدهای جدید بر سلامت این موجودات مصرف فراورده‌های آنها را بر مصرف کندن به آسانی تهدید می‌نماید. انتقال در سیستم عصبی، کلیوئی و گردش خون اشاره نمود [1]. فلزات سنگین می‌توانند وارد مواد غذایی نظیر چای شود. گیاه چای در طی مرحله رشد و همچنین در موقع فرواری در کارخانجات می‌تواند به فلزات سنگین آلوده شود [2]. مصرف سرشان چای سیاه در ایران حدود ۱۵ کیلوگرم بر آورد می‌گردد. ایران با دارا بودن ۱/۱ از جمعیت کل جهان، محصول فلزات سنگین کلیه چای را به خود اختصاص داده است [۳]. در مطالعات در سال ۲۰۰۲ میانگین غلظت سرب در ۵۷ نمونه چای خشک موجود در بازار چین ۱/۳۲ میلی گرم بر کیلوگرم گزارش گردید و در انتها با آب مقطر دیوئزه شده به حجم ۲۵ میلی لیتر رسانده شدند [۴]. به منظور تعیین میزان فلزات سنگین در نمونه‌ها از دستگاه طیف‌سنجی جذب اتمی مدل Shimadzu- AA-670 استفاده گردید و آسیب‌های کرون محلول به مدت ۷۰ ثانیه انجم گرفت. آب دیوئزه از دستگاه Mili pore Direct-Q3 از شرکت Merck مصری استفاده شد. انتخاب آلمن خریداری گردید. در این مطالعه در جنوب هند میانگین غلظت چهار فلز سنگین سرب، کروم، نیکل و مس در ۱۰۰ نمونه چای خشک به ترتیب برای با ۲/۳۲۶، ۲/۷۰۶، ۲/۷۰۴ میلی گرم بر کیلوگرم بود و محتوا سرب و مس آن کمتر از حد مجاز و
بحث

پیش از دو میلیون بر کیلوگرم تیتانیوم نمود [2] در مطالعه دیگری در شمال ایران، فلخت سرب در چای 87/4 میلیون بر کیلوگرم گزارش شد. با توجه به این ارقام و مقایسه آن با حد مجاز مشخص شده سرب در نمونه‌های چای خشک توسط وزارت بهداشت ایران دیده می‌شود. در این مطالعه، غلظت سرب در نمونه‌های چای 47/9±8/4 میلی‌متر بر کیلوگرم به دست آمده است. به‌دست آمده، این مقدار بسیار بیشتر از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران بود.

جدول 1- میانگین و انحراف معیار میزان سرب، کروم، مس نیکل در نمونه‌های چای سیاه (برحسب میلی‌متر بر کیلوگرم)

<table>
<thead>
<tr>
<th>نام مایع</th>
<th>انحراف معیار ± میانگین</th>
<th>مس</th>
<th>کروم</th>
<th>نیکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>طلا</td>
<td>1±0/98</td>
<td>1/95±6/08</td>
<td>7/6±3/85</td>
<td>7/1±3/85</td>
</tr>
<tr>
<td>کل مورچه‌ای</td>
<td>1/4±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>شیلان</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>دوکراچی</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>سیلان</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>احمد</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>محمود</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>دوکراچی</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>گلستان</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>کلاسی</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>کیسه‌ای</td>
<td>1/8±1/23</td>
<td>1/23±0/56</td>
<td>7/1±0/98</td>
<td>3/1±1/25</td>
</tr>
<tr>
<td>میانگین</td>
<td>1±0/98</td>
<td>1/95±6/08</td>
<td>7/6±3/85</td>
<td>7/1±3/85</td>
</tr>
</tbody>
</table>

در این مطالعه، غلظت سرب در نمونه‌های چای 47/9±8/4 میلی‌متر بر کیلوگرم به دست آمده است. در این مقاله، بیش از هر مقدار دیگری، از بین‌می‌رود. به‌دست آمده، این مقدار بسیار بیشتر از مقدار مجاز تعبیه شده توسط وزارت بهداشت ایران بود [2]. این مطالعه به‌طور مشابه، غلظت سرب موجود در چای خشک را
بهداشت می‌باشد ولی غلتگی سرب از جه مجاز تعیین شده توسط وزارت بهداشت بیشتر بود. البته یاد متدک شد میزان این فلزات سگین در چای اکثر به میزان قابل‌توجه کمتر از غلتگی این فلزات در چای خشک می‌باشد. همچنین درصد فلزات سگین در دسترس برای جذب در دستگاه گوارش متفاوت است. به‌طور مشخص نشده است از آنجا که دسترس‌پذیری زیستی به سایر فلزات در چای ناشخص است و به عوامل جون معد مربوط است [2]. می‌توان نتیجه گرفت که میزان چربی این فلزات در بدن سیب کاهش می‌یابد. همکاران Matsuura [1] که 80٪ فلزات سگین را از چای خشک به کاهش پیش گرفتند 80٪. فلزات سگین را از چای خشک به چای دم کرده اعلام نمودند [9] این نوعی پدیده‌ی نแพทยِzik در طی رشد و سپس در مراحل فرواری در کارخانه‌های آلودگی به فلزات سگین می‌شود. فلزات می‌توان واریتی این فلزات در چای دم کشیده سیب سیب کاهش یافته و همچنین مقدار کمتری از این فلزات جذب بدن می‌شود. در مجموع نتایج این تحقیق نشان داد چای می‌توان بدون نگرانی از مسمومیت به وسیله عناصر مواد بررسی، به طور متعادل برای بهره‌گیری از عناصر ضروری موجود در آن به عنوان یک شام‌مندب‌های می‌تواند استفاده قرار گیرد. البته با توجه به افزایش انتشار فلزات سگین در محیط زیست و در بی تجمع این فلزات در کیاهان، لازم است انتقال‌های گردی های مستمر در خصوص میزان فلزات سگین در منابع غذایی صورت گیرد و سپس با مقایسه غلتگی‌های آستانه این فلزات در مواد غذایی، اقدامات کنترلی جهت بیشتری از انتشار فلزات سگین در محیط زیست به عمل آید. از می‌شود که غلتگی این فلز در نمونه‌های چای بیش از مقدار استاندارد است. مس یک فلز اصلی در چای می‌باشد. هدایت غلتگی مجاز در چای 150 میلی‌گرم بر کیلوگرم توسط وزارت بهداشت تعیین شده است [1]. میانگین غلتگی مس در این مطالعات 238/69 میلی‌گرم بر کیلوگرم بود. در مطالعات انجام شده در هند، چین و ایران میانگین غلتگی مس در چای به ترتیب 0.5، 24/8، 23/6 میلی‌گرم بر کیلوگرم گزارش شده است [5، 6، 7]. به واریتی در تراکم غلتگی این فلز در میان موارد وزارت بهداشت برای چای می‌باشد و نشان می‌دهد محارم‌ی مس در چای خشک در کلیه نمونه‌ها در سطح این قرار دارد. غلتگی نیکل در این مطالعه 2/9119 میلی‌گرم بر کیلوگرم می‌باشد. نیکل یک فلز سمی است و همچنین حد اجازی از غلتگی آن در چای قابل قبول نمی‌باشد. غلتگی نیکل را در چای Seenivasan مطالعاتی توسط می‌گردد 1/11 میلی‌گرم بر کیلوگرم و مطالعه دیگر توسط Marcos گزارش کرده است [8]. غلتگی کروم در این مطالعه 0.81 میلی‌گرم بر کیلوگرم بود. میزان کروم در چای بستگی زیادی به فرازی نتیجه‌گیری‌های انتقال و کارخانه فراوری این دارد [5] در مطالعه‌های در هند غلتگی کروم در چای 4/27 میلی‌گرم بر کیلوگرم گزارش شده است [7]. نتیجه‌گیری در این مطالعه نشان داد که کروم محتوای فلزات سگینی چون مس، نیکل، کروم و سرب است غلتگی
References

A Survey on Pb, Cr, Ni and Cu Concentrations in Tehran Consumed Black Tea: A Short Report

M. Malakootian¹, M. Mesreghani², M. Danesh Pazhoo³

Received: 18/01/10 Sent for Revision: 27/02/10 Received Revised Manuscript: 09/10/10 Accepted: 24/10/10

Background and Objectives: Heavy metal pollution has always been a major type of environmental contamination and a main concern for food health. Tea is the most popular beverage in Iran and the presence of heavy metal in tea has received special attention because of their direct effect on health. The aims of this study were to measure the concentrations of Pb, Cr, Ni and Cu in consumed tea.

Materials and Methods: A cross-sectional study was designed for this research. Eleven type of the most widely consumed brands of dry black tea were purchased from local market in Tehran. Certain volumes of four samples of each brand were collected and digested with Nitric acid and Chloridric acid using wet digestion method. The final solution of digestion was used to determine the level of these metals. Heavy metal contents in each sample were determined by atomic absorption spectrometry.

Results: The result showed that the mean concentrations of Pb, Cr, Cu and Ni in tea samples were 6.97±4.78, 5.75±1.08, 23.85±9.68, 2.91±1.9 (mg/kg), respectively. The maximum concentrations of Pb, Cr, Cu and Ni in tea samples were recorded for Ahmad tea Bag, Shilan, Golaby and dochakoshi, respectively.

Conclusion: The results indicated that Pb and Ni concentrations in the black tea were higher than the permissible limit for the human foods, while for the other heavy metals, the amounts were lower than that. Regarding increasing trend of food sources, contamination with heavy metals and also due to their bioaccumulation in human body and the subsequent health risks, it is recommended to control these products.

Key words: Heavy metals, Tea, Atomic absorption, Iran

Funding: This research was funded by Kerman University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics committee of Kerman University of Medical Sciences approved the study.

1- Professor, Dep. of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
2- Msc student of Environmental Health Engineering, Kerman University of Medical Sciences, Kerman, Iran
3- Bs of Practical Chemistry, Faculty, of Dentistry, Kerman University of Medical Sciences, Kerman, Iran