مقاله پژوهشی
جلد چهار، شماره چهار-ب، زمستان ۱۳۸۴، صفحه ۲۳۴-۲۴۲
آثر اکسیدنتریک در بیان حساسیت حرکتی به نیکوتین و آپومورفین در موش
اشرف شیرازی، ناصر اصلانلو، مهوژ عفاف جوادی، دکتر هدایت صحرایی، مهیم خسروی
دریافت مقاله: ۱۳۸۴/۳/۲۳
اصلاح نهایی: ۱۳۸۴/۵/۱۰
بعدات مقاله: ۲۳

چکیده
زمینه و هدف: نیکوتین از مهم‌ترین داروهای اعتیاد‌آور محصول می‌باشد. از آمایش‌ها نشان داده‌اند که مصرف مکرر نیکوتین باعث افزایش حساسیت حیوان به این دارو می‌شود. برای کنترل این مسئله، در این مطالعه، تأثیر آکسیدنتریک در حساسیت حرکتی موش مورد بررسی قرار گرفته است.

مواد و روش‌ها: در این مطالعه تیتر از آل‌آرنیزین، (به صورت آکسیدنتریک) به کمک روتوسخ‌های L-NAM (هیپرات سنتر اکسیدنتریک) و در ماهیانی به همراه دیگر فعالیت‌های حرکتی می‌باشد. بیان حساسیت موش به نیکوتین در محیط مختلف نشان داده شده است. نتایج حساسیت موش به نیکوتین در محیط مختلف نشان داده شده است. نتایج حساسیت موش به نیکوتین در محیط مختلف نشان داده شده است.

یافته‌ها: از آمایش‌ها نشان داده شد که تجویز نیکوتین در میان گروه‌های میانگین هم‌سطح با درازه‌های زبان حساسیت حرکتی موش و اکسیدنتریک در محیط مختلف نشان داده شده است. نتایج حساسیت موش به نیکوتین در محیط مختلف نشان داده شده است. نتایج حساسیت موش به نیکوتین در محیط مختلف نشان داده شده است.

نتیجه‌گیری: از آمایش‌ها نتایج حساسیت حرکتی موش به نیکوتین و آپومورفین می‌باشد. برای کنترل این مسئله، در این مطالعه، تأثیر آکسیدنتریک در حساسیت حرکتی موش مورد بررسی قرار گرفته است.

واژه‌های کلیدی: نیکوتین، اکسیدنتریک، آل‌آرنیزین، حساسیت حرکتی، آپومورفین.
مقدمه

یکی از راه‌های مهم در بررسی اثر داروهای مخدر در القا حساسیت، پرسی اثر داروها بر دهی‌ای مصرف در حیواناتی است که فاصله این داروها را دریافت کرده‌اند. لازم به توجه است که همان‌طور که حیرت حیوان نیز مؤثرند و می‌توانند باعث پیشرفت بسیار زیاد در حیوانات شوند. این امر را هم‌سازی رفتاری نشان می‌نماید. [۷] آزمایشات فراوانی نشان داده که اکتیفی نیکوتین موجد در سیستم مزحور نیکوتینیکمیک‌یکی از مهم‌ترین...
مواد و روش‌ها

 ero به نیکوتین موردنیه روزگاری است. این تحقیق به
منظور بررسی اثر اکسید نیتروژن در چشمان از خواص
پاداشی نیکوتین باید بروز حساسیت حرکتی در موه گوکچه
ازمایشگاهی نرم نمود. در این مطالعه، از این آزمایشگاهی
ارگنیسم واقعی برای مقایسه و
نتیجه‌گیری نهایی که اثر اکسید نیتروژن ممکن است از
می‌تواند (های) دوپامینی اعمال شود. استفاده شد.

روش‌ها

روش نگهداری حساسیت حرکتی به نیکوتین: برای اجرای
حساسیت به نیکوتین: به مدت یک هفته و هر روز یکبار
نیکوتین (۱۴ mg/kg) به صورت داخل صورقه به حیوانات
تزریق می‌شد. سپس حیوانات به مدت ۴۰ روز دارویی دریافت
نمی‌کردند. در روز دهم، دوز کم اثر نیکوتین (۲۰ mg/kg) به
حیوانات تزریق شده و در هر حیوان به مدت ۳۰ دقیقه در داخل
دستگاه مخصوص شمارش حرکت قرار می‌گرفت و فعالیت
حرکتی حیوان در این مدت اندازه‌گیری می‌شد.[۴۵]

روش انجام آزمایش حساسیت حرکتی: برای انجام
آزمایش، از یک دستگاه حساسیت سنج فنی (ساخت مرکز
پژوهش بنیاد جنگل‌داران-ایران) استفاده شد که دارای سه ردیف
دبی‌مدور فرآیند دو دوربین بود. اعداد یافته در دستگاه
۳۰۰، ۲۳۰، ۲۱۰ سانتی‌متر (طول و عرض و ارتفاع) می‌باشند و
دوبی‌ها در ارتفاع ۲ و ۲۱۵ سانتی‌متر از کف دستگاه قرار
داشت. این دوبی‌ها هرگونه حرکت حرکتی را در داخل دستگاه
ثبت می‌کردند. برای بررسی اثر هر دارو، ابتدا حیوانات به محل
آزمایش منطقت هدایت و پس از ۵ دقیقه که با محیط ساکن
شدن، آزمایش شروع می‌شده. ابتدا به حیوانات دارو تزریق
می‌شد و سپس ۵ دقیقه حیوانات در داخل دستگاه قرار
می‌گرفت تا آن آتش شود و پس از آن دستگاه روشن شده و
به مدت ۱۰ دقیقه حرکت هر حیوان ثبت می‌شد.[۴۵]

آزمایشگاهی مورد بررسی قرار گرفته است. این تحقیق به

سازگاری شوند. سپس فعالیت حرکتی هر حیوان در مدت زمان 20 دقیقه بررسی شد. گروه‌های کنترل سالین دریافت گردیدند (نمونه‌گیری 2-1-5).

بررسی اثر آن-آزوئین و L-NAME بر کسب و بیان حساسیت حرکتی به نیکوتین در این قسمت، حیوانات 5 روز و هر روز یکبار نیکوتین در آفته‌های 14 mg/kg (نمونه‌گیری 2) دریافت می‌گردند. 20 دقیقه قبل از تجویز نیکوتین، ابتدا به حیوانات دوزهای مختلف آن-آزوئین 5، 10 و 15 mg/kg (L-NAME) ادراری اعمال می‌گردند. در روز دهم، ابتدا به همه گروه‌ها نیکوتین (25 mg/kg) تزریق می‌شود و از 5 دقیقه زمان برای عادت کردن، فعالیت حرکتی هر حیوان در مدت زمان 20 دقیقه بررسی شد. گروه‌های کنترل سالین دریافت گردیدند (نمونه‌گیری 2-1-5).

به منظور بررسی اثر دراروهای نیتریک از ریزیک بر بیان حساسیت حرکتی به نیکوتین، چهار گروه از حیوانات ابتدا 5 دقیقه به نیکوتین تزریق شد و در روز دهم ابتدا به حیوانات دوزهای مختلف آن-آزوئین (5، 10 و 15 mg/kg) (نمونه‌گیری 2) در روز دهم دریافت می‌گردد. سپس 4 روز استراحت به حیوانات داده شد. در روز دهم، ابتدا به حیوانات دوزهای مختلف آن-آزوئین (5، 10 و 15 mg/kg) (نمونه‌گیری 2) دریافت می‌گردد. 20 دقیقه بعد، نیکوتین (25 mg/kg) به همه گروه‌ها تزریق شد و 5 دقیقه حیوانات در داخل دستگاه قرار گرفتند تا با محیط
بررسی اثر آل-آرژنین و L-NAME بر کسب و بیان حساسیت حرکتی به آمورفین در این قسمت، حیوانات ۲ روز و ۸ روز پیکار آمورفین (۲ mg/kg) دریافت می‌گردند. ۲۰ دقیقه قبل از تجویز آمورفین، ابتدا به حیوانات دوزهای مختلف آل-آرژنین ۵، ۱۰ و ۲۰ mg/kg (۵، ۱۰ و ۲۰ mg/kg) L-NAME در روز دهم، ابتدا به حیوانات دوزهای مختلف آل-آرژنین ۵، ۱۰ و ۲۰ mg/kg (۵، ۱۰ و ۲۰ mg/kg) L-NAME تزریق شد و پس از ۵ دقیقه زمان برای عادت کردن، فعالیت حرکتی هر حیوان در مدت زمان ۲۰ دقیقه بررسی شد. گروه‌های کنترل سالیان دریافت کردند (نمودار ۳-الف و ۳-ب).

به منظور بررسی اثر داروهای مترنیکارزینیک بر بیان حساسیت حرکتی به آمورفین، حیوانات ۲ روز و ۸ روز پیکار آمورفین (۲ mg/kg) دریافت می‌گردند. سپس، ۷ روز استراحت به حیوانات داده شد. در روز دهم، ابتدا به حیوانات دوزهای مختلف آل-آرژنین ۵، ۱۰ و ۲۰ mg/kg (۵، ۱۰ و ۲۰ mg/kg) L-NAME تزریق شد و ۲۰ دقیقه بعد، آمورفین (۲ mg/kg) به همراه گروه‌ها تزریق شد و ۵ دقیقه حیوانات در داخل دستگاه قرار گرفتند تا با محفظ سازگار شوند. سپس فعالیت حرکتی هر حیوان در مدت زمان ۲۰ دقیقه بررسی شد. گروه‌های کنترل سالیان دریافت کردند.

(نمودار ۳-ج و ۳-د).

روش‌های آماری

اطلاعات به دست آمده به صورت میانگین ± انحراف معیار استاندارد (Mean ± SEM) فعالیت حرکتی حیوانات نسبت به گروه بانی آ_takeای عبارت است. Mean±SEM اختلاف نسبت به گروه کنترل سالیان و **p<0.01 ***p<0.001 اختلاف نسبت به آمورفین است.

نتیجه‌بری مطالعه حساسیت حیوانات به‌باره‌ی نیکوتین، L-NAME و آیپرومیفین
در این آزمایش، موش‌ها به چهار دسته تقسیم شدند. گروه اول به روی دختر کندون در قسمت‌های مختلف نیکوتین (2.5 mg/kg، 5/5، 10 و 20) در دوز‌های مختلف آیپرومیفین (50 و 100 mg/kg) قرار گرفتند و در نتیجه حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفت. در نتیجه، حساسیت حیوانات به‌باره نیکوتین در دوز‌های مختلف آیپرومیفین به‌ترتیب 5/5، 10 و 20 mg/kg در نتوانی‌تبار حساسیت حیوانات را به‌باره نیکوتین نشان داد. این نتیجه به‌صورتی که در این آزمایش گروه‌های مختلف نیکوتین در دوز‌های مختلف آیپرومیفین به‌باره حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفتند، نشان می‌دهد که تجویز آیپرومیفین سبب افزایش حساسیت حیوانات بشده است.

بررسی اثرات آیپرومیفین و L-NAME بر کسب حساسیت
در این آزمایش، موش‌ها به چهار دسته تقسیم شدند. گروه اول به روی دختر کندون در قسمت‌های مختلف نیکوتین (2.5 mg/kg، 5/5، 10 و 20) در دوز‌های مختلف آیپرومیفین (50 و 100 mg/kg) قرار گرفتند و در نتیجه حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفت. در نتیجه، حساسیت حیوانات به‌باره نیکوتین در دوز‌های مختلف آیپرومیفین به‌ترتیب 5/5، 10 و 20 mg/kg در نتوانی‌تبار حساسیت حیوانات را به‌باره نیکوتین نشان داد. این نتیجه به‌صورتی که در این آزمایش گروه‌های مختلف نیکوتین در دوز‌های مختلف آیپرومیفین به‌باره حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفتند، نشان می‌دهد که تجویز آیپرومیفین سبب افزایش حساسیت حیوانات بشده است.

بررسی اثرات آیپرومیفین و L-NAME بر کسب حساسیت
در این آزمایش، موش‌ها به چهار دسته تقسیم شدند. گروه اول به روی دختر کندون در قسمت‌های مختلف نیکوتین (2.5 mg/kg، 5/5، 10 و 20) در دوز‌های مختلف آیپرومیفین (50 و 100 mg/kg) قرار گرفتند و در نتیجه حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفت. در نتیجه، حساسیت حیوانات به‌باره نیکوتین در دوز‌های مختلف آیپرومیفین به‌ترتیب 5/5، 10 و 20 mg/kg در نتوانی‌تبار حساسیت حیوانات را به‌باره نیکوتین نشان داد. این نتیجه به‌صورتی که در این آزمایش گروه‌های مختلف نیکوتین در دوز‌های مختلف آیپرومیفین به‌باره حساسیت حیوانات به‌باره نیکوتین مورد بررسی قرار گرفتند، نشان می‌دهد که تجویز آیپرومیفین سبب افزایش حساسیت حیوانات بشده است.
نیتریک سنتز با عنوان داروهای بالاردنده فشار خون مطرح هستند. ممکن است افزایش فشار خون در این حیاتات باعث افت فعالیت حرقی در این حیاتات شد باشد. به هر حال، ربط دادن کاهش اکسید نیتریک فیزیولوژیک را که از تجربی L-NAME به وقوع می‌پیوندد با تغییر در فعالیت مسیر دوبامین مزورکورتیکوپامینیک، سیستم مشکل است.

آزمایش‌های اخیر نشان دادند که تجویز مکرر و منقطع نیتروگلیس می‌تواند به حساسیت حرقی در موش‌های کوچک آزمایشگاهی ماده می‌شود. نتایج مطالعات قبلی نشان می‌دهد که تجویز مکرر نیتروگلیس در موش‌های بزرگ آزمایشگاهی نیز قادر به افزایش حساسیت حرقی می‌باشد. [16] در مورد موش های کوچک آزمایشگاهی باید گفت که نتایج منطقی است. هرچنین برخی از محققین نشان داده که تجویز نیتروگلیس به صورت منقطع باعث رشد حساسیت حرقی در این حیاتات می‌شود. [5-6] اما تحقیقاتی وجود دارد که از عدم تجویز نیتروگلیس در این حیاتات حساسیت حرقی در این حیاتات حکایت دارد (برای مور مرجع شود [13]). محققین ما در این سلسله با نتایج دسته اول محققان است اما با نتایج نتایج دسته دوم همخوان نیست. به‌سیاسی از تحقیقات نشان داده‌اند که نیتروگلیس به ترخیص مسیر دوبامین مزورکورتیکوپامینیک و افزایش رئیا مسیر دوبامین در هسته آکومپاس اثر خود را در افزایش حساسیت رئیا دارند. [11, 7-14] نتایج نشان داده‌اند که نیتروگلیس با اثر گیرنده‌های خود از نوع موسوم به بوده 0.5، 0.7 و 0.8 نتایج آکومپاس به صورت پیش‌بینی شده و هسته آکومپاس اثر خود را در افزایش رئیا مسیر دوبامین در ناحیه زولپرامیک شده و در نتیجه پاسخ حساسیت حرقی القا می‌شود. [12, 11, 11, 14] این اکسید دوبامین با افزایش حرقکات استروتایپ‌ها مانند فعالیت حرقکی و جویدن و حرقکات غیر استروتایپ‌ها مانند بوسکلین ماده همراه است [9] با علاوه بر امروز اطلاعاتی در دست است که نشان می‌دهند که دیگر نورودنمایی‌ها آنلسته کامل می‌گردد [15] و اکسید نیتریک [13, 14] در عمدکرک تحریکی نیتروگلیس دخالت دارد.

حیوانات منجر شود. این نتایج در مطالعات قبلی نیز به دست آمده است و یکی از خواص مهم نیتروگلیس به شمار می‌روید [21] این اکسید تکمیلی توسط دوبامین با دلیل این دارو بر مراکز حرقکی موجود در دم و نخاع بوده و به همین دلیل معتقدند که این دارو باید تحریک حرقکی در حیوانات شد. این نتیجه نیز با نتایج قبلی همخوانی دارد [22] مهارگان آنزم اکسید نیتریک باعث القا حرقکی در حیوانات شد. این نتیجه نیز با نتایج قبلی همخوانی دارد [22] مهارگان آنزم اکسید نیتریک باعث القا حرقکی در حیوانات شد. این نتیجه نیز با نتایج قبلی همخوانی دارد [22] مهارگان آنزم اکسید نیتریک باعث القا حرقکی در حیوانات شد. این نتیجه نیز با نتایج قبلی همخوانی دارد [22] مهارگان آنزم اکسید نیتریک باعث القا حرقکی در حیوانات شد. این نتیجه نیز با نتایج قبلی همخوانی دارد [22] مهارگان آنزم اکسید نیتریک باعث القا حرقکی در حیوانات شد. این نتیجه NAME- باعث القا حرقکی در حیوانات شد. این NAME- باعث القا حرقکی در حیوانات شد. این NAME- باعث القا حرقکی در حیوانات شد. این NAME- باعث القا حرقکی در حیوانات شد. این
تجویز مکرر اپومورفین نیز توانست حساسیت حرقکی را در موش‌های آزمایشگاهی کوچک افزایش دهد. نتایج ما با تناوب قلیل در این میزان هموکاری در [22 و 27] و نشان می‌دهد که تجویز مکرر اپومورفین نیز توانست میزان دوباره حساسیت حرقکی را افزایش دهد. در این دوباره حساسیت حرقکی را در حیوانات قاله کوچک، اما تجویز این همان اثرات داروهای مجرد در حیوانات قاله نمی‌دهد. علت این موضع شایع اثر تکراره و غیر اختصاصی این داروها در سایر مناطق دوباره نمی‌باشد.

تجویز ایل-آمزیکین اثر خاصی را بر کسب حساسیت حرقکی به نیکوتین با خود نشان داده اما بیان حساسیت L-NAME باعث مهار کسم و هم بیان حساسیت حرقکی به نیکوتین شد. در تحقیقات قبلی، تجویز ایل-آزمیکین باعث تقویت کسب و مهار بیان ترجیح مکان شرطی شده ناشی از نیکوتین در موش‌های کوچک آزمایشگاهی است [20]. از سوی دیگر، تحقیقات قبلی نشان داده که ایل-آزمیکین کسب و بیان حساسیت حرقکی به معیار را تقویت می‌کند [22]. نتایج حاصل با توجه به مطالعات قبلی نشان می‌دهد که می‌توان به دلیل تفاوت در روش کار (تفاوت بین ترجیح مکان شرطی شده و حساسیت حرقکی) که در نتیجه تفاوت در مصرفی موش قاله در مصرفی موش قاله از داروهای استفاده (مورفین و نیکوتین) و عوامل مشابه به آنها (هر دهنده) نشان می‌دهد. در آزمایش‌های قبلی، L-NAME توانست این کسب حساسیت حرقکی را در موش‌های بزرگ آزمایشگاهی نر خنثی کند [15] این نتیجه با نتایج ما در مورد موش‌های کوچک آزمایشگاهی همخوانی دارد. اما همیکران نشان داده که قادر به مهار بیان حساسیت حرقکی به نیکوتین در این موش‌های نیست [16]. این قسمت با نتایج ما در تیپ است. ممکن است علت تفاوت به گونه حیوانات مربوط باشد.

تجویز هم ایل-آزمیکین و هم L-NAME باعث مکرر کسب و بیان حساسیت حرقکی به آپومورفین شد. در آزمایشات قبلی L-NAME نتایج مشابهی در ارتباط با
است به بروز این پاسخ‌ها منجر شده‌است. در هر حال، با پاسخ در این مورد تحقیقات بیشتری انجام شود تا دلیل این نشانه روشن شود.

نتیجه‌گیری

در نهایت، این تحقیق نشان داد که مکانه‌های وابسته به اکسید نتریک در بررسی حساسیت حرقک به نیکوتین و آپومورفین تا حدودی دخالت دارند و این نتیجه با نتایج قبلی در مورد تداخل بین اکسید نتریک و نیکوتین در ترجمه مکانی شرطی در موس کوچک آزمایشگاهی و حساسیت حرقک در موس بزرگ آزمایشگاهی و همچنین نفی اکسید نتریک در سیگار کشیدن [13] هم‌خوانی دارد.

تشکر و قدردانی

این کار قسمتی از طرح تحقیقات مرکز تحقیقات علوم رفتاری، پژوهشکده علوم پزشکی بخش بهبهان، جهت پیگیری متغیرهای وابسته به علت می‌باشد.

References

