مقاله پژوهشی
جلد چهار، شماره چهار– ب، زمستان ۱۳۸۴، ۲۳۲-۲۴۴
مجله دانشگاه علوم پزشکی رفسنجان

اثر اسیدنیتریک در بیان حساسیت حرکتی به نیکوتین و آیومورفین در موش

اسرف شیرازی، ناصر اصلانلو، مهریز علی‌جوادی، دکتر هدایت صحرایی، میرم خوئی

دریافت مقاله: ۱۳۸۴/۲/۳۰
اصلاح نهایی: ۱۳۸۴/۱۰/۱۴
پذیرش مقاله: ۲۴/۱۳۸۴

چکیده
زمینه و هدف: نیکوتین از مهم‌ترین داروهای اعیان‌آور محسوس می‌شود. از این نگاه همان داننده که مصرف مکرر نیکوتین باعث افزایش حساسیت بدن به این دارو می‌شود. در این مقاله بررسی نتایج اکسید نیتریک در کاربرد این دارو در حساسیت حرکتی موش توسط نیکوتین است. با توجه به این که در بزرگ حس‌سنجی، مسری‌های دوبایی مغز را دخیل می‌شود و برای این اثبات آن از داروی آیومورفین استفاده می‌کنند، در این تحقیق نیز داروهای آیومورفین به عوامل شاهدی بر تداخل اکسید نیتریک با مسری‌های دوبایی مغز مورد استفاده قرار گرفت.

مواد و روش‌ها: این مطالعه تجربی از آل-آزئینی (پیش‌ساز اکسید نیتریک) و L-NAME (مهاگر سنتر اکسید نیتریک) بر کسب و بانی در حال حساسیت توسط نیکوتین در موش کوچک آزمایشگاهی ماده زاد تازه در محدوده وزنی ۲۰-۲۵ گرم بررسی شد. در این مطالعه نیکوتین به مقدار ۰.۵/۰.۵، ۲/۰.۵، ۱/۰.۵ و ۰/۰.۵ mg/kg در دو روز حساسیتی حرکتی کودکان در مورد L-NAME (mg/kg) (۱۲۵ mg/kg، ۱۰۰ mg/kg، ۷۵ mg/kg و ۵۰ mg/kg) در دو روزهای قله حساسیت و قبل از تجویز نیکوتین و آیومورفین (بین) به حفرات قلبی تزریق شدند.

یافته‌ها: از این نگاه همان داننده که تجویز نیکوتین در دوره ۱ بعث کاشف معنی دار فعالیت حرکتی حیوانات می‌شود. تجویز آیومورفین در دوره ۱۲۵ mg/kg، ۱۰۰ mg/kg و ۷۵ mg/kg به طور می‌باشد. در حالت کیفی که تجویز آل-آزئینی اثری بر فعالیت حرکتی حیوانات نداشت، در دوره‌های ۱۲۵ mg/kg، ۱۰۰ mg/kg، ۷۵ mg/kg و ۵۰ mg/kg اثر بر حساسیت حرکتی ناشی از نیکوتین نداشت اما از کسب حساسیت حرکتی به آیومورفین جلوگیری کرد. تجویز L-NAME در دوره ۱۰۰ mg/kg از این نگاه همان داننده که تجویز نیکوتین و آیومورفین جلوگیری کرد.

نتیجه‌گیری: از این نگاه همان داننده که تجویز نیکوتین به طور می‌باشد، در حالت کیفی که تجویز آل-آزئینی اثری بر فعالیت حرکتی حیوانات نداشت، در دوره‌های ۱۲۵ mg/kg، ۱۰۰ mg/kg، ۷۵ mg/kg و ۵۰ mg/kg اثر بر حساسیت حرکتی ناشی از نیکوتین نداشت اما از کسب حساسیت حرکتی به آیومورفین جلوگیری کرد.

واژه‌های کلیدی: نیکوتین، آکسید نیتریک، آل-آزئینی، حساسیت حرکتی، آیومورفین.
آزمایشات نشان داده که تجویز مکر دوزه‌ای نسبتاً کم نیکوتین می‌تواند به افزایش پاسخ‌های فرد بر آن منجر شود.

این حال که می‌تواند با تحمیل معکوس می‌یادن و یکی از علائم منفی مانند نگهداری سکولاریسم کم‌درمانی نشان دهد.

[16] منطقه مختلف فضای جامع باعث ایجاد کننده‌ای دوگانی در دسترسی می‌شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شته ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.

به‌طور کلی، این نتایج نشان می‌دهد که کاهش ترکیب محلی شجمه ناشی از نیکوتین می‌تواند موجب نزدیک‌سازی استخوان‌های حساسیت شده شود.
مواد و روش‌ها

حیوانات: در این مطالعه تجربی از موش‌های کوچک آزمایشگاهی مورد استفاده می‌شده است. این حیوانات به میزان وزی 50-200 گرم استفاده شدند. حیوانات به فقرهای 20 تا 24 درجه‌ای و در دمای 22-24 درجه‌ای در آزمایشگاه دوام دارند. در روز دهم، دوز کم اثری نیکوتین (0.25 mg/kg) به حیوانات تزریق شده و فهرورزی به مدت 20 دقیقه در داخل دستگاه مخصوص شمارش حکم شرطی قرار می‌گرفت و فعالیت حکمی حیوان در این مدت اندازه‌گیری می‌شد [4-5].

روش انجام آزمایش حساسیت حکمی: برای انجام آزمایش حساسیت حکمی، از یک دستگاه حکمی سنج فلزی (ساخت مرکز پژوهش بنیاد جراحان-ایران) استفاده شده است. حکمی سنج به سه رديف بدسته‌داده می‌شود. بدسته‌داده 20×30 سانتی‌متر طول و عرض و ارتفاع سیب زرد و 60 سانتی‌متر از کف دستگاه قرار داشت. این دستگاه برای حرکت حیوان به داخل بدسته‌داده می‌باشد. در این دستگاه دو روز دوباره آزمایش خدمات حکم می‌شود. بدسته‌داده به حیوانات دارو تزریق می‌شود و سپس 10 دقیقه در داخل بدستگاه قرار می‌گرفت. برای انجام آزمایش حساسیت حکمی، از یک دستگاه سنج فلزی استفاده شده است. حکمی سنج به سه رديف بدسته‌داده می‌شود. بدسته‌داده به حیوانات دارو تزریق می‌شود و سپس 5 دقیقه حیوان در داخل بدستگاه قرار می‌گرفت. نتایج نهایی که اثر آسیب دیدگی حکمی محسوس می‌شود، شمردگی و 2 می‌شود و به مدت 10 دقیقه حکمی حیوان شد. در این مدت دوباره حکمی سنج به سه رديف بدسته‌داده می‌شود و سپس 10 دقیقه در داخل بدستگاه قرار می‌گرفت. نتایج نهایی که اثر به ترتیب می‌شود و سپس 10 دقیقه در داخل بدستگاه قرار می‌گرفت.
سازگاری شوند. سپس فعالیت حرکتی هر حیوان در مدت زمان ۳۰ دقیقه بررسی شد. گروه‌های کنترل سالین دریافت کردن (نمودار ۲-ج و ۲-د).

بررسی اثر L-آرزئینی و L-NAME بر کسب و بیان حساسیت حرکتی به نیکوتین

در این قسمت، حیوانات ۵ روز و ۵ هر روز یکبار نیکوتین (۲/۵ mg/kg) در زمان ۶ دقیقه تزریق شدند. در هر روز حیوانات دو گروه به ل-آرزئین و L-NAME (در مقدار ۰/۵ و ۵ mg/kg) بودند. در ۶ دقیقه اولیه و پس از ۲۰ دقیقه، این گروه‌ها به حیوانات داده شد. سپس ۴ روز استراحت محمدی به حیوانات داده شد. در دومین روز، این گروه‌ها به حیوانات داده شد. در مدت زمان ۳۰ دقیقه بررسی شد. گروه‌های کنترل سالین دریافت کردن (نمودار ۲-ج و ۲-د).

حساسیت حرکتی به نیکوتین

در این قسمت، حیوانات ۵ روز و ۵ هر روز یکبار نیکوتین (۲/۵ mg/kg) در زمان ۶ دقیقه تزریق شدند. در هر روز حیوانات دو گروه به L-آرزئین و L-NAME (در مقدار ۰/۵ و ۵ mg/kg) بودند. در ۶ دقیقه اولیه و پس از ۲۰ دقیقه، این گروه‌ها به حیوانات داده شد. در مدت زمان ۳۰ دقیقه بررسی شد. گروه‌های کنترل سالین دریافت کردن (نمودار ۲-ج و ۲-د).

حساسیت حرکتی به نیکوتین، چهار گروه ایجاد گردید و حیوانات ابتدا ۵ روز و یکبار نیکوتین (۰/۴ mg/kg) دریافت کردن. سپس ۴ روز استراحت محمدی به حیوانات داده شد. در روز دهم، ابتدا به حیوانات دو گروه در مقدار L-آرزئین و L-NAME (در مقدار ۰/۵ و ۵ mg/kg) داده شدند. در ۶ دقیقه اولیه و پس از ۲۰ دقیقه، این گروه‌ها به حیوانات داده شد.
بررسی اثر آل-آرژنین و L-NAME بر کسب و بیان حساسیت حركتی به آپوامورفین
در این قسمت، حیوانات ۲ روز و هر روز یکبار آپوامورفین (۲ mg/kg) دریافت می‌کردند. ۲۰ دقیقه قبل از تجویز آپوامورفین، ابتدا به حیوانات دوزهای مختلف آل-آرژنین (۰،۵ و ۱ mg/kg) L-NAME (۱۰،۱۰ و ۵ mg/kg) (۲) روز استراحت به حیوانات داده شد. در روز دوم، ابتدا به حیوانات دوزهای مختلف آل-آرژنین (۵،۱۰ و ۲۰ mg/kg) L-NAME (۲) روز تسهیل در بالعدهای ال-آرژنین به همراه گروه آپوامورفین (۲ mg/kg) دریافت شد. سپس ۲۰ دقیقه بعد از تجویز شد و سپس از ۵ دقیقه زمان برای عادت کردن، فعالیت حرکتی هر حیوان در مدت زمان ۲۰ دقیقه بررسی شد. گروه‌های کنترل سالین دریافت کردن (نمودار 3-الف و گ).

به منظور بررسی اثر داروها نتیجه‌گیری‌کارایی بر بیان حساسیت حركتی به آپوامورفین، حیوانات ابتدا ۲ روز و هر روز یکبار آپوامورفین (۲ mg/kg) دریافت کردن، سپس ۷ روز استراحت به حیوانات داده شد. در روز دوم، ابتدا به حیوانات دوزهای مختلف آل-آرژنین (۰،۵ و ۱ mg/kg) L-NAME (۲) روز استراحت به حیوانات داده شد. در آپوامورفین (۲ mg/kg) به همراه گروه آپوامورفین (۲ mg/kg) دریافت شد. سپس ۲۰ دقیقه بعد از تجویز شد و سپس ۵ دقیقه فعالیت حرکتی هر حیوان در مدت زمان ۲۰ دقیقه بررسی شد. گروه‌های کنترل سالین دریافت کردن (نمودار 3-ب و ۳-الف).

روش‌های آماری
اطلاعات به دست آمده به صورت میانگین ± انحراف معیار استاندارد (Mean ± SEM) از آزمون آنانالیز واریانس یک طرفه و به دنبال آن تست تک‌وکی استفاده شد. 

نمودار ۳-الف
آپوامورفین ۳ میلی گرم / کیلوگرم دریافت از آغاز حساسیت

نمودار ۳-
بر اساس حساسیت این گروه در سه روزه‌ای کمتر از آن سایر گروه‌ها بود.

نمودار ۴-
بر اساس حساسیت این گروه در سه روزه‌ای کمتر از آن سایر گروه‌ها بود.
نتیجه
بررسی فعالیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.

آیومورفین، -آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود. 

-آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود.

بررسی اثرات -آرژئین و L-NAME
L-NAME
به حساسیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.

آیومورفین، -آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود.

بررسی اثرات -آرژئین و L-NAME
L-NAME
به حساسیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.

آیومورفین، -آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود.

بررسی اثرات -آرژئین و L-NAME
L-NAME
به حساسیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.

آیومورفین، -آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود.

بررسی اثرات -آرژئین و L-NAME
L-NAME
به حساسیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.

آیومورفین، -آرژئین و L-NAME
در این آزمایش، می‌توان به حساسیت در پاسخ به نیکوتین، تجویز نیز متفاوت محسوس می‌شود.

بررسی اثرات -آرژئین و L-NAME
L-NAME
به حساسیت حرشی شبکه‌های در پاسخ به نیکوتین می‌بود.
نتیجه‌گیری سنتز با عنوان داروهای بالارزنه فشار خون مطرح و هستند. ممکن است افزایش فشار خون در این حیاتات باعث افزایش حرکتی در این حیاتات شده باشد. به هر حال، ربط دادن کاهش اکسید تیترپولیزیک را که به تجربی L-NAME به وقوع می‌پیوند به تغییر در فعالیت سپر دوربین‌های مورفولینیکمیک بسیار مشکل است.

آزمایش‌های حاضر نشان داد که تجویز مکروک و منطقه نیکوتین سبب بروز حساسیت حرکتی در موش‌های کوچک آزمایشگاهی ماده می‌شود. نتایج مطالعات قبلی نشان می‌دهد که تجویز مکروک نیکوتین در موش‌های بزرگ آزمایشگاهی نیز قادر به افزایش حساسیت حرکتی می‌باشد [10-15]. در مورد موش‌های کوچک آزمایشگاهی باید نگذاری تغییر منفی است. هرچنین برخی از محققین نشان داده‌اند که تجویز نیکوتین با صورت منطقه باعث بروز حساسیت حرکتی در این حیاتات می‌شود [4-5]. اما تحقیقات وجد دارند که از عدم توانایی نیکوتین در افزایش حساسیت حرکتی در این حیاتات حکایت دارد (برای مور رجوع شود به [6]): تحقیقات ما در هم‌خوانی با نتایج دسته اول محققان است اما با نتایج محققین دسته دوم و هم‌خوانی نیست. بسیاری از تحقیقات نشان داده‌اند که نیکوتین با تجویز مسیر دوربین‌های مورفولینیکمیک و افزایش رها شدن دوربین‌های آکسید آمریکان اثر خود را در افزایش قابلیت دویزی بالاتر از آبنوس آسیاب حرکت در حیاتات را نشان داده است [22]. همچنین، تحقیقات قبیلی نشان داده‌اند که تجویز آل-آزمایشگاهی می‌تواند به افزایش قابلیت مکروک نیکوتین نسبت به موش‌های کوچک آزمایشگاهی نرسد [20]. والاقا-تیترپولیزیک در موش‌های بزرگ آزمایشگاهی را رفع می‌کند. محققان در عملکرد تجربی نیکوتین دخالت دارند [16]}

حواوی‌های منجر شود، این نتیجه در مطالعات قبلی نیز به دست آمده است و بکی از خواص مهم نیکوتین به شمار می‌رود [21، 22]. این حکم توسط نیکوتین به دلیل اثرات داروی بر مراکز حرکتی موجود در مغز و تغییر بوته و به همین دلیل معتقدند که این دارو باید تجربی حرکتی در حیوان‌ها باعث اتفاقات کاتالیپتیک در آن‌ها شود [21]. در آزمایش‌های حاضر، مقدار متفاوتی از نیکوتین مورد استفاده قرار گرفته‌امان نشان دهیم 21 میلی‌گرم این دارو از نظر آماری نفست عنوانی باید بی‌همتی دوستی شاید به دلیل که زمان اندورگ‌بر حرکت ۲۰ دقیقه بود. افزایش زمان اندورگ‌بر ممکن است اثرات مختلف افزایش دوربین‌های می‌باشد. می‌تواند با تجربیات این گروه‌ها اثرات مختلف افزایش دوربین‌های می‌باشد.

در تحقیقات قبلی مراکز بالاتر از آزمایشگاهی اثرات مختلفی در حیاتات را نشان داده است [22]. همچنین، تحقیقات قبیلی نشان داده‌اند که تجویز آل-آزمایشگاهی می‌تواند به افزایش قابلیت مکروک نیکوتین نسبت به موش‌های کوچک آزمایشگاهی نرسد [20]. والاقا-تیترپولیزیک در موش‌های بزرگ آزمایشگاهی را رفع می‌کند. محققان در عملکرد تجربی نیکوتین دخالت دارند [16]
تجویز مکرر آبومورفین نیز توانست حساسیت حشریت را در موش‌های آزمایشگاهی کوچک افزایش دهد. نتایج ما نشان داد که بروز این رفتار می‌تواند به بروز حساسیت حشریت در آن‌ها منجر شود. هرچند این داروها حساسیت حشریت را در حیوانات بالارو دارند و این موضوع اثری در حیوانات بالارو دارند. علت این مورد نسبت به مکانیسم‌های مختلف غیراصطبل در سایر مناطق دوبیومیکس مقیاس نشده است.

تجویز آل-آرزینین اثر خاصی را بر کسب حساسیت حشریت به نیکوتین در حیوانات بالارو دارا می‌داند. این بدان معناست که تجویز آل-آرزینین حساسیت حشریت را در حیوانات بالارو دارا می‌کند. همچنین، تجویز L-NAME نیز توانست حساسیت حشریت را در موش‌های آزمایشگاهی کوچک افزایش دهد. نتایج ما نشان داد که بروز این رفتار می‌تواند به بروز حساسیت حشریت در آن‌ها منجر شود. هرچند این داروها حساسیت حشریت را در حیوانات بالارو دارند و این موضوع اثری در حیوانات بالارو دارند. علت این مورد نسبت به مکانیسم‌های مختلف غیراصطبل در سایر مناطق دوبیومیکس مقیاس نشده است.

تجویز آل-آرزینین اثر خاصی را بر کسب حساسیت حشریت به نیکوتین در حیوانات بالارو دارا می‌داند. این بدان معناست که تجویز آل-آرزینین حساسیت حشریت را در حیوانات بالارو دارا می‌کند. همچنین، تجویز L-NAME نیز توانست حساسیت حشریت را در موش‌های آزمایشگاهی کوچک افزایش دهد. نتایج ما نشان داد که بروز این رفتار می‌تواند به بروز حساسیت حشریت در آن‌ها منجر شود. هرچند این داروها حساسیت حشریت را در حیوانات بالارو دارند و این موضوع اثری در حیوانات بالارو دارند. علت این مورد نسبت به مکانیسم‌های مختلف غیراصطبل در سایر مناطق دوبیومیکس مقیاس نشده است.
بیان حساسیت حسی به آیومورفین در موش‌های کوچک آزمایشگاهی نشان داده است [27]. از سوی دیگر، خود دارو به نهایی بروز بحرکتی در جویانات می‌شود. بنابراین، ممکن است نتیجه‌گیری گیری شود که کاهش حساسیت حرکت دفاعی در مرحله بیان، به دلیل بروز تداخل بین اثرات کاهش دهنده حرکت توسط L-NAME از یک طرف و داروهای نیکوتین و آیومورفین از طرف دیگر باشد. در آزمایشات دیگران نیز کاهش کسب حساسیت حرکتی به نیکوتین در موش‌های بزرگ آزمایشگاهی در نتیجه تجویز L-NAME دیده شده است [16]. بنابراین، نتیجه حاضر دفاعی L-NAME در قسمتی با نتایج قبلی هم‌خوانی دارد. علت بروز پاسخ‌های یکسان به ال-آرژینین و تداخل تداخلات آزمایشگاهی تغییرات مراحلی و مشاهده شده است. می‌کنند که این دلایل شاید این باشد که نیکوتین و آیومورفین در ارتباط با اکسید نیتریک مکانیسم‌های متفاوتی را در مغز فعال می‌کنند و این مکانیسم‌های متفاوت ممکن

References


