مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره پایداره، فروردین و اردیبهشت ۱۳۹۱، ۵۵-۶۸

بررسی اثرات آنتی اسکیدانی و اندازه‌گیری ترکیبات فلزی عصاره‌های جنگی قارچ

Phellinus torulosus

دارویی

فریبا حکیم‌اللهی، حسن رحیمی، حسن رفیعی، محمدحسین حکیمی، هاجر حیدری، فاطمه حبیبالاسادات، مصطفی عطی‌زاده، ابراهیم فروتن، سیدعلی موسی‌زاده

دریافت مقاله: ۱۳۸۹/۰۸/۱۲، تصمیم اصلاح: ۱۳۹۰/۰۱/۱۷

چکیده

که انتشار سرطان در مناطق به‌خاطر Phellinus torulosus

زیمینه و هدف: فارق مطالعه واکنش مختلف می‌باشد. مطالعه حاضر با توجه به اهمیت موضوع و کمپوزیت تحقیقات برخی، در ایران انجام می‌گیرند.

مواد و روش‌ها: این مطالعه آزمایشگاهی در تابستان و پاییز سال ۱۳۸۷ گزارش‌های جهت بررسی واکنش دارویی مصرف گونه‌ها و کمبود تحقیقات راه‌پیمایی، آزمایش داروهای DPPH و عصاره ماتانولی نام و عصاره فلکی (کلوروفیوریک، بیوناتولی و ای) آن به دو روش تحریک رادیکال‌ها آزاد و یک روش انجام شد. همچنین مقدار کل ترکیبات فلوری به روش Folin-Ciocalteu می‌باشد.

یافته‌ها: نتایج نشان می‌دهد که در هر دو آزمون آنتی‌اسکیدانی، عصاره ماتانولی نام و به خصوص جزء بیوناتولی آن فعالیت قابل‌توجهی در تحریک رادیکال‌ها آزاد و کاهش پودری فیبریک داشته است. خلخل‌سازی مایع از عصاره‌های مختلف (ماتانولی، کلوروفیوریک، بیوناتولی و ای) که به ترتیب به میزان ویژه ۸۷/۲۲±۰/۸۷، ۸۳±۰/۵۳، ۸۴±۰/۹۲ و ۹۲±۰/۵۳، مصرف همچنین مقدار کل ترکیبات فلوری به روش Folin-Ciocalteu می‌باشد.

نتیجه‌گیری: نتایج این مطالعه نشان داده‌های این آزمایشات قوی عصاره‌های مختلف به ویژه عصاره بیوناتولی قارچ دارویی می‌باشد. فعالیت آنتی‌اسکیدانی این فارما به‌وجود برخی خواص آنتی آنزیمی، قابل توجه بوده و توجیه اقتصادی چشمه‌گیری دارد.

خواص آنتی‌اسکیدانی، ترکیبات فلوری، قارچ‌های دارویی، بومی ایران Phellinus torulosus

واژه‌کلیدی: C ۰۰ ۱ ۰ ۲ ۳ ۴

Fariba_Hokmollahi@yahoo.com

۱ نویسنده مستند: کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۲ استاد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۳ استاد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۴ استاد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۵ کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۶ کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۷ کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۸ کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران

۹ کارشناسی ارشد گروه آموزش سیستم‌شناسی گیاهی، دانشگاه شهد بهشتی تهران
مقدمه
همان‌طور که در قارچ‌ها و منابع‌های آنها به وجود رفته است، فیلیمیک‌ها (Phellinus) مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و همکاران در سال 1957، خاصیت ضد‌سرطانی قارچ‌هایی با نام P. gilvus در دانش‌آموختگان دانشگاه مسکو است. این گونه‌ای به‌عنوان یک گونه‌ای توده‌ای مناسب‌ترین و همچنین اثرات به‌عنوان یک گونه‌ای توده‌ای از قارچ‌هایی است که توسط Lucas و H
به منظور انجام مطالعه پژوهشی- کاربردی، نمونه‌های مختلف این فاری نسبی در تاپستن و پایین سال ۱۳۸۷ از

Pellinus torulosus

مواد و روش‌ها

جمع‌آوری و شناسایی فاری دارویی به منظور انجام مطالعه پژوهشی- کاربردی، نمونه‌های مختلف این فاری نسبی در تاپستن و پایین سال ۱۳۸۷ از

عصاره‌گیری از فروتهی بادی گونه P. torulosus:

به منظور تهیه عصاره‌مانندی تام و عصاره‌های با قطیبی منتفی، بر روی ۹۰ گرم از فاری پیدار شده با دستگاه مخلوط‌کن (Blender) مقدار ۸۰۰ میلی‌لیتر مانند ٪۷۵ ریخته شد و به مدت ۴۸ ساعت در یک ظرف در دمای آزمایشگاه نگهداری گردید. سپس عصاره حاصل Rotary سانی‌گر دن از گردینه گرده عصاره مانندی به دست آمد.
مقداری از عصاره متانولی خشک برای تهیه عصاره متانولی کنار گذشته شد و به یک میلی لیتر آب حل شده و طی 3 بار استخراج و هر بار با اضافه کردن 10 میلی لیتر کلروفورم، بر روی کلروفورمی به دست آمد. برای بدست آوردن برخ بیوناتولی، مقدار 40 میلی لیتر n- بیوناتول طی 3 مدت (2×3 میلی لیتر) به بخش آپی الیک مانده اضافه شد. به بخش آپی الیک مانده پس از دو استخراج، برای آپی اطلاق شده و کلیه عصاره‌ها پس از تغییری قطع مقدار ی/1 گرم بر میلی لیتر در حال استناد بخش معیاری که در آب حل شد، برای انجام اجزایه‌ای آنیکسیدان مورد استفاده قرار گرفت. جهت ساختن عصاره‌های یکنواح و کاملاً محلول، دستگاه حجم سه‌نیک مورد استفاده قرار گرفت.

بررسی فعالیت آنیکسیدانی DPPH (2,2-diphenyl-1-piracylhydrazil)

روش انتخابی آنیکسیدان‌ها با استفاده از روش اندازه‌گیری کاهش نوری اثر دی‌پنیل-1-پیریلاز (Radical Scavenging) به کمک DPPH به کمک Capacity DPPH به کمک اثر ارزیابی قرار گرفت. DPPH اثر دی‌پنیل-1-پیریلاز می‌تواند به دلیل حضور گروه‌های نیتریلی فیبر ساختاری را به راحتی دیده رادیکال‌ها در آمب و در واقع ساختاری را به راحتی دیده رادیکال‌ها در آمب و در واقع

FRAP (Ferric reducing antioxidant power)

روش انتخابی آنیکسیدان‌ها با استفاده از روش اندازه‌گیری کاهش نوری FRAP (قدرت آنیکسیدانی کاهش بیونی Fe³⁺-TPTZ در فریک) بر اساس کاهش زرد نرگه آبی رنگ (Tripyridyltriazine) Fe³⁺-TPTZ می‌باشد. برای تهیه محلول FRAP استاند (0.1 میلی مول, 3/4 pH 1 میلی لیتر بایر TPTZ استاند (0.1 میلی مول در 40 میلی مول اسید کلریدریک) و 10
اندازه‌گیری مقدار کل ترکیبات فنولی (TPC) از روش استفاده می‌شود. برای این منظور مقدار Folin-Ciocalteu 40 گرم گالیکسپید خشک در 10 میلی‌لیتر میلی‌مولول حل شود و سپس با آب مقطع به حجم 100 میلی‌لیتر رسید. بین ترتیب محلول مادر به طور مساوی 100 میلی‌متر منحنی کالیبراسیون مقدار 0.1، 0.2، 0.3، 0.4 و 0.5 میلی‌لیتر از محلول مذکور به بالای هوا زده می‌شود. میلی‌لیتری متخلخل و به‌کار برای حجم رسید. این محلول با ترکیب دارای گلخانه‌های 50، 100، 150، 200 و 1 میلی‌گرم بر لیتر گالیکسپید بودند. در این آزمایش 20 میکرولیتر از عصاره‌های مختلف قارچ‌ها با غلظت 10 گرم بر لیتر، 2 میلی‌لیتر آب مقطع و Molar فوئورکسید Folin-Ciocalteu بعد از 3 دقیقه، 300 میکرولیتر از محلول (17/18) Na2CO3 به آنها اضافه شده و محلول‌ها به مدت 2 ساعت تکان داده شدند.

نهاً جذب محلول‌ها در 245 نانومتر توسط دستگاه استیکتروفوتوورام متغیر شد. مقدار کل ترکیبات فنولی عصاره‌ها با استفاده از منحنی استاندارد گالیکسپید معاینه شد. پس از رسیدن منحنی کالیبراسیون گالیکسپید اسید، معادله خطی منحنی به دست می‌آید که به قرار دادن مقدار جذب به دست آمده از عصاره‌ها از این معادله می‌توان غلظت محلول گالیکسپید از عصاره‌ها را ppm محاسبه کرد. غلظت به دست آمده بر حسب ppm می‌باشد. پس از گردیدن Mgallicase، نتیجه نهایی جذب می‌باشد که گرم گالیکسپید بر گرم خشک عصاره گزارش می‌شود [20].

میلی‌لیتر (Ml) بیش از 20 ترکیب، این واکنشگر در مقدار 37 نانومتر تهیه می‌گردد. در غیر این صورت تغییر رنگ داده و کدر می‌شود. در این آزمایش، واکنشگر حاوی FeSO4 Fe3+ با TPTZ Fe3+ افزایش غلظت آنتی اسیدان کمیکس و Fe3+ تشکیل می‌شود و رنگ رنگ محلول به رنگ آب تغییر می‌پدیدا. کننده به همراه کیفیت کاهش بیشتر می‌شود و کمیکس Fe2+ به Fe3+ بیشتری ایجاد می‌شود و رنگ محلول Fe2+ (TPTZ)2+ آبی تر می‌شود.

برای انجام این آزمایش 2 میلی‌لیتر از محلول AP غلظت‌های مختلف از نمونه‌ها افزوده و به مدت 5 دقیقه در دمای 37 درجه سانتی‌گراد مراقب داشتند. سپس چرب محلول‌های حاصل در طول موج 595 نانومتر توسط دستگاه استیکتروفوتوئومتر خوانده شد. در این آزمایش، نتایج بر حسب میکرومول آهن بر گرم خشک عصاره محاسبه و گزارش داده می‌شود. قدرت آنتی اسیدانی عصاره‌ها با استفاده از رسم منحنی استاندارد FeSO4.7H2O بررسی می‌شود.

بدین ترتیب که نمودار جذب بر حسب غلظت‌های مختلف از عصاره‌های مختلف رسم گردید، سپس مقدار عصاره بر حسب میکرومول در یک غلظت مشخص (غلظتی که جذب آن در محدوده جذب منحنی کالیبراسیون قرار گیرد) به گرم طیف‌گر کرد. غلظت مورد نظر از عصاره در محدوده جذبی همان عصاره قرار داده می‌شود و میزان جذب عصاره مورد نظر به دست می‌آید و پس از آن در معادله جذبی آهن قرار داده می‌شود تا غلظت معادل آهن به دست آید [7].
برش با قطعیت‌های متفاوت از این عصاره تهیه شدند. این سه برش عبارت بودند از برش کلروفورمی (CE)، برش بوتاولوئی (BE) و برش آبی (WE) که به مسیره معروف مورد ارزیابی قرار گرفتند. نتایج به دست آمده به DPPH همراه با تکرار در نمونه‌های 1 و 2 و همچنین در جدول 1 آمده است.

نتایج

نانباسی جنس و گونه قارچ مورد نظر با استفاده از روش‌های نانباسی مرسوم و نظر استاندارد محترم در این زمینه از جنس و گونه قارچ مورد نظر اطمینان حاصل بود و نمونه قارچ جهت تصادم به کشور فنلاند فرستاده شد. در نهایت کد همبسته‌ی ۱۴۱۱۹۹۰۹ برای این قارچ در نظر گرفته شد (شکل ۱).

نتایج پرسی خواص آنتی‌اکسیدانی به روش کاهش پیوند‌های فریک (Ferric Reducing Antioxidant Power) به منظور بررسی خاصیت آنتی‌اکسیدانی به روش Power به منظور بررسی خاصیت آنتی‌اکسیدانی به روش Power که دارای بررسی فریک، عصاره، زمین‌مانند (ME) و سه برش با قطعیت‌های متفاوت از این عصاره، بعضی برخی کلروفورمی (CE)، برش بوتاولوئی (BE) و برش آبی (WE) به منظور بررسی خاصیت آنتی‌اکسیدانی به روش FRAP مورد استفاده قرار گرفتند و پس از جهت آزمایش
قرار دادن میزان جذب نمونه‌ها در معادله با فسفر لیکنیه FeSO₄ طول آن از عصاره‌ها به دست آمده. نتایج بدست آمده به همراه 3 بار تکرار در نموهای 3 و 4 همراه با در جدول 1 آمده است.

نمودار 2 - میزان عصاره آنتی‌اکسیدانی مختلف قارچ P. torulosus بوتانولی قارچ در آزمایش قدرت آنتی‌اکسیدانی کاهش بونهای فریک

<table>
<thead>
<tr>
<th>عصاره</th>
<th>IC₅₀ (میکروگرم بر میلی لیتر)</th>
<th>تغییر رادیکال‌های آزاد DPPH (میکرومول آهن فریک بر گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بوتانولی</td>
<td>32/26/4/151/20/1/0</td>
<td>3/4/5/26/0/0/0/0</td>
</tr>
<tr>
<td>کاهش بونهای فریک</td>
<td>1/1/1/1/1/1/1/1</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1 - مقدار IC₅₀ (میکروگرم بر میلی لیتر) و میکرومول آهن فریک بر گرم عصاره قارچ P. torulosus

هر دو تست آنتی‌اکسیدانی، عصاره مانولی نام و بخصوص جزء بوتانولی آن فعالیت قابل ملاحظه‌ای در تخریب رادیکال‌های آزاد و کاهش بونهای فریک نشان می‌دهد. غلظت‌های مؤثر از عصاره‌های مختلف (مانولی تام، کلروفورم و بوتانول) که 100/0/0/0/0% رادیکال‌های آزاد را تخریب می‌کند (IC₅₀)، به ترتیب 87/22/0/0/0/0 و 11/98/0/0/0/0 میکروگرم بر میلی لیتر بوتانولی بهره‌های آماری نشان می‌دهد که فعالیت آنتی‌اکسیدانی
جدول ۲ - مقادیر کل ترکیبات فنولی عصاره‌های فاوجی Phellinus torulosus

<table>
<thead>
<tr>
<th>عصاره</th>
<th>مقدار کل ترکیبات فنولی (میلی گرم GA بر گرم عصاره)</th>
</tr>
</thead>
<tbody>
<tr>
<td>منانولی نام</td>
<td>۲۴/۸±۲/۱</td>
</tr>
<tr>
<td>پرش کلروفومی</td>
<td>۴۹/۸±۲/۴</td>
</tr>
<tr>
<td>پرش بونتانولی</td>
<td>۷۶/۳±۳/۲</td>
</tr>
<tr>
<td>پرش آبی</td>
<td>۸۵/۶±۲/۷</td>
</tr>
</tbody>
</table>

بحث

فناوتی انسیسایلی و میزان ترکیبات فنولی: ویژگی‌های انسیسایلی اکسیژن نقش حیاتی در عمل پیوستگی متفاوت مثل استفاده از غذا، انتقال الکترون برای تولید ATP و غیره دارد. در حالی که اکسیژن برای حیات ضروری است، همچنین می‌تواند باعث اکسیداسیون کردن مواد درون سلول شود و نقش تخریب کننده داشته باشد. اکسیژن می‌تواند به اشکال بسیار متنوع مثل رادیکال‌های سوپراکسید (O₂⁻)، رادیکال‌های هیدروکسیل (OH⁻) و پراکسید هیدروژن (H₂O₂) و نیز در چیزی با این صورت (Oxidative stress) می‌تواند منجر به استرس اکسیدانی (که در برای مثال به DNA گردیده) می‌شود. سپس بررسی شده که آنزیم‌های سروری و پروتئین‌های ساختاری را تخریب کند. همچنین می‌تواند باعث شود میزان آنزیم‌های نشانه‌گیری از کنترل خارج شده مثل واکنش‌های انواع کمیتی و براکسیداتور (مثل پلیریزاسون کانالزین) را برانگیزد [۲].

ترکیبات فنولی به روش‌های مختلف می‌تواند رادیکال‌های آزاد را خنثی کند. بنابراین این نتایج نشان می‌دهند که میزان ترکیبات فنولی فاوجی Phellinus torulosus باعث از جمله سرطان نقش دارد. این ترکیبات به سپار متنوع هستند و اثر متفاوتی دارند. ترکیبات فنولی خاصیت آنتی اکسیدانی نیز به طور قابل ملاحظه‌ای افزایش می‌یابد.

همچنین قدرت آنتی اکسیدانی کاهش پونه‌های فریک با غلظت ۲۰۰ تا ۴۰۰ میکروگرم بر میلی‌لیتر از عصاره‌های دمکوز به ترتیب ۱/۲۴، ۲/۳۷، ۳/۴۸ و ۴/۹۸ میکرومول تعیین شدند. بررسی‌های آماری نشان می‌دهد که فعالیت آنتی اکسیدانی عصاره بونتانولی در آزمایش نیز در مقایسه با عصاره‌های دیگر در سطح ۵% اختلاف معنی‌دار دارد (۵/۰۰<پ۰).

نتایج حاصل از اندوزه‌گیری مقدار کل ترکیبات فنولی قارچ: مقدار کل ترکیبات فنولی بر اساس مقادیر جذب عصاره‌های مختلف (WE و BE ،CE،ME) و واکنش داده با معرف Folin-Ciocalteu و مقایسه آن با محلول‌های استاندارد گالکسی اسد هم از دست آمد (شکل ۲). نتایج این آزمایش با سه تکرار در جدول ۲ آمده است. بالاترین میزان ترکیبات فنولی در جزء بونتانولی (۲/۷۴۴ mg GA/gr extract) با مقدار (BE) مشاهده شد.

ملاحظه: درجه اندوزه‌گیری ترکیبات فنولی فاوجی Phellinus torulosus با بروز ریزسازی و بهبود خاصیت آنتی اکسیدانی امسال.
دریافت گیری
نتیجه‌گیری

نتیجه‌گیری
ناتای این مطالعه نشان می‌دهد که قارچ دارویی Phellinus torulosus در این مدل می‌تواند باعث افزایش مقاومت بیشتر در برخی بوتانولی تجمع یافته‌اند. این مقادیر فعالیت آنتی‌اکسیدانی با توجه به درمان دسترسی و همچنین هزینه بسیار پایین‌تر در مقایسه با سایر منابع طبیعی و مصنوعی موجود برای مواد انتی‌اکسیدانی بسیار می‌باشد. این نتایج اقتصادی چشمگیری دارد. به همین دلیل تحقیقات گسترده‌تر در جهت شناسایی مواد مؤثره موجود در فروشگاه‌های داخلی این قارچ در حال انجام می‌باشد. در نهایت، P. torulosus بررسی جنبه‌های و سازوکار خواص درمانی ایرایی (از قبیل بررسی اثرات در قارچی، در انتها، ضربه‌ها، ضربات‌های سطح برخوردار است که مواد در مطالعات برخی و با داروسازی مورد توجه قرار می‌گیرد. در هر صورت با توجه به رونک درجه‌بندی با استفاده از متنای زیستی و دوستدار محیط زیست ضرورت استفاده از این قارچ در صنایع غذایی، دارویی و مصرفی پرست بسیار احساس می‌گردد در این راه شناسایی، جمع‌آوری و توئیتی از این پتانسیل منابع طبیعی بومی ایران قدم اولیه است که در این تحقیق مورد بررسی قرار گرفته.
References

[9] Mossazade SA. Report and introduce of the biggest edible mushroom with medicinal effect on
مazorکان، مازندران. تحقیق از فرصت‌های جهانی برای صنعت دارویی از روی حکومت‌های و همکاران.

[16] Natarajan K, Kolandavelu K. Resupinate Aphyllophorales of Tamil Nadu, India. Centre for advanced study in Botany, University of Madras. 1998; 133.

[22] Fathi F. Chemical assessment and Evaluation of antioxidant and antibacterial effects of the essence and extracts from two *Salvia* species. Tehran,
Investigation of the Antioxidant Activities and Determination of the Phenol Content of Fractional Extracts of Iranian Medicinal Mushroom *Phellinus torulosus*

F. Hokmollahi¹, H. Rafati², H. Riahi³, M.H. Hakimi⁴, H. Heydari⁵, F. Haghirosadat⁶, M. Azimzade⁷, A.R. Frotan⁸, S.A. Mossazade⁹

Received: 22/12/2010
Sent for Revision: 14/03/2011
Received Revised Manuscript: 27/03/2011
Accepted: 06/04/2011

Background and Objectives: *Phellinus Quel* is a large and widely distributed genus of the family Hymenochaetaceae under the class of Basidiomycetes with more than 359 species. Due to their great medicinal effects and lack of investigation on Iranian species, this study was performed.

Materials and Methods: In this laboratory study, the macro- and micro-morphological properties of the species were determined using the total methanol extract and it’s fractional extracts (chloroform, butanol and water extracts). The antioxidant assays were then performed. The radical scavenging capacity of fractional extracts of this fungus were evaluated by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reducing-antioxidant power assays. Also, the total phenol content of each extract was measured using Folin-Ciocalteau method.

Results: The results indicated that the total methanol extract showed a significant antioxidant activity. Further fractionation indicated that the butanol fraction had a stronger activity than the total methanic extract in both antioxidant assays. The effective concentrations of the different extracts (total methanol, chloroform, butanol and water), for scavenging of 50% of generated radicals (IC₅₀), was 30.87±0.83, 87.22±7.92, 11.98±0.74 and 229.67±2.76 μg/ml, respectively.

Conclusion: The results showed that different extracts, especially butanol extract have high antioxidant activities which indicate the presence of active components in this fraction. Considering these great antioxidant effects and its low expense, it is recommended to use this fungus in more clinical trial researches and drug manufacturing industry.

Key words: *Phellinus*, Antioxidant effects, Phenolic compounds, Medicinal mushroom, Native of Iran

Funding: This research was founded by Shaheed Beheshti University, Tehran, Iran.

Conflict of interest: None declared.

Ethical approval: None declared.