مقاله پژوهشی
مجله دانشگاه علم پزشکی رفسنجان
دوره پنجم، شماره چهارم، زمستان 1385، 217-244

ویبروآتروتوگرافی، روش نوین در تشخیص استنوازدریت زانو

دکتر عباس رحیمی، محمد محسن رستاکی، داود الله شاهی مربی

چکیده
زمینه و هدف: استفاده از صداهای مفصلی برای تشخیص و پیشبینی ضایعات مفصلی، به دلیل افزایش تعدادی از آزمون‌های تشخیصی مفصلی که به گونه‌ای مجازی استنوازدریت زانو را تشخیص نمی‌دهند، به همراه افزایش تعدادی از آزمون‌های تشخیصی مفصلی که به گونه‌ای مجازی استنوازدریت زانو را تشخیص نمی‌دهند، به همراه افزایش تعدادی از آزمون‌های تشخیصی مفصلی که به گونه‌ای مجازی استنوازدریت زانو را تشخیص نمی‌دهند.

مواد و روش‌ها: مواد تشکیل‌دهنده این مطالعه شامل دانشمندان، دانشجویان، مهندسان، پزشکان، پزشکان خانواده، پزشکان عمومی و پزشکان حرفه‌ای بودند. روش‌های استفاده شده در این مطالعه شامل آزمون‌های تشخیصی مفصلی و آزمون‌های تشخیصی مفصلی بودند. 

یافته‌ها: یافته‌های این پژوهش نشان داد که دانلواز دریات زانو در دو گروه مختلفی: گروه با سطح سنوری دارای استنوازدریت زانو و گروه دیگر با سطح سنوری نداشتن استنوازدریت زانو وجود دارد. در صورتی که در گروه با سطح سنوری استنوازدریت زانو به گونه‌ای متوقف شود و در صورتی که در گروه دیگر با سطح سنوری استنوازدریت زانو به گونه‌ای متوقف شود.

نتایج گیری: البته به‌طور کلی، با توجه به نتایج پیشنهادی در این مقاله، حمله‌های مفصلی و روش‌های تشخیصی مفصلی بسیار مفید و مفید هستند.

واژه‌های کلیدی: استنوازدریت زانو، ویبروآتروتوگرافی، غیره‌جاحی
مقدمه

استفاده از روش‌های غیر تهاجمی و ارزان قیمت در تشخیص بیماری‌ها، بر روی‌های تهاجمی و گران قیمت ترجیح داده می‌شود. در مطالعات انجام شده، استفاده از صداهای مفصلی به عنوان یک تکنیک غیر تهاجمی و ارزان، ارزش خود را در تشخیص و هم در پیش‌گیری ضایعات خاص درون مفصل نشان داده است [21]. وبی‌آرتروتروگرافی روشن عینی برای ثبت و مطالعه ارزش‌های حاصله از مفاصل انسان می‌باشد. ۴ در این روش یک گیرنده حساس، ترجیحاً یک شاتن‌سنج برای ثبت اطلاعات حاصله از مفاصل به کار می‌رود. تکنیک مهم در این روش نوع گیرنده و نیز محل قرار دادن آن می‌باشد که در صورت استفاده از یک وسیله تقویت کننده، کلیه صداهای قابل شنیدن واخودن بود [25]. دستگاه‌های تقویت کننده صداهای مفصلی عبارتند از گوشی میکروفون، شاتن‌سنج و غیره.

سه عامل عمده در تولید صداهای مختلف عبارتند از مقدار استطلاع ایجاد شده بین سطوح مفصلی، نوع حرکت انجام شده، و مهم‌تر از همه سرعت انجام حرکت [46] از این روش تأکید علائم بی‌بل و ریه در تشخیص بیماری‌های مفاصلی (هریم)، زانو و فکی - چگالی تحقیقات زیادی انجام گردیده است [10-12]. در مورد مفصل زانو، محققین قبلی با کمک گوشی به پرسی صدمات مرتب اصطرافی [12-11] آن‌ها را محاسبه دایکاگرم گوشی جهت کاهش صداهای ناشی از استطلاع پوست، به طبیعتی در صداهای متفاوت خارج شده از زانو اقدام می‌نمودند و موفق شدند تعدادی از صداهای طبیعی و غیر طبیعی را شناسایی کنند. گروس‌های فیزیولوژیکی مفصل پاتلوفرومال (Physiologic Patello-femoral Crepitus) (PPC) نشان دهنده داده که در صورت ندارد گیرنده بر روی کشکک‌های دیگر تیم می‌گردد [126].
شرایط سینه انجام می‌شود. از آن جا که شتاب‌سنج‌های جدید همراه با فیلترینگ مناسب، محققین را قادر به مطالعه بالینی بهتر در استفاده از ویبروآرترگرافی می‌نماید و هنوز در زمینه استوارتریت زانو ابهامات زیادی وجود دارد، هدف از انجام این مطالعه، بررسی بهتر جهت امکان استفاده از ویبروآرترگرافی در تشخیص و نیز پیش اگهی استوارتریت زانو می‌باشد.

مواد و روش‌ها

در این مطالعه که از نوع ارزیابی آزمون تشخیصی می‌باشد 22 نفر شرکتکننده که از آن بین 11 نفر دختر استوارتریت دو طرفه زانو به میانگین سنی 24-26 سال و 11 نفر هم به میانگین سنی 22-24 سال دارای زانوهای سالم و به عنوان گروه کنترل در نظر گرفته شدند. بیماران همگی توسط پزشک ارتباط را با تشخیص استوارتریت درجه 1 با 2 (درجه بندی Kellgren & Lawrence) معروف شدند [14].

افراد سالم در این تحقیق، سابقه درد و تراختی زانو نداشتند و از نظر سن، جنس و میزان فعالیت روزانه با بیماران به صورت همگن انتخاب شدند و هر دو زانوی راست و چپانی مورد آزمایش قرار گرفت. با برای، در این تحقیق، 22 زانو دچار استوارتریت و 22 زانو سالم، مورد بررسی ویبروآرترگرافی قرار گرفت. بیماران بر روی یک صندلی پایه بلند نشسته و زانوهایشان با 90 درجه خم و آویزان گردید اطلاعات بیماران شامل متخصص‌فری، دامنه حرکتی، توم، میزان حرکت کشک و بافت‌های رادیوگرافیک، توسط یک فیزیوتراپیست با تجربه در بیماری‌های تورمی در بررسی‌نامه خود ساخته وارد گردید. سپس شتاب‌سنج میاناندری (3755, Brul & Kjaer, دانمارک) در تیز مدیال، لاتزال و روی کشک گذاشته شد و با چسب دو در محل نامتین گردید و کالعد (مخصوصاً شتاب‌سنج به پری امپلی فایرو، فیلی، امپلی فایرو و در نهایت به یک کامپیوتر وصل شد (شکل‌های 1 و 2).
گردید و میانگین مجزور کای در برای هر سیگنال ویپراپتروگرافی محاسبه گردید. گرافها در برنامه Excel رسم شد و از تی زوج و آنالیز واریانس یک طرفه، برای مقایسه میانگین مجزور کای بین زانوهای چپ و راست و بین سه محل افزایش گردید. در ضمن با کمک یکی از مهندسین دانشگاه مسیت شریف، نرم‌افزار جدید نام دادن سیگنال‌های طراحی شده و با کمک آن مدل میانگین مجزور کای برای هر فرد یک ست به دست آمد و با قدرت بزرگنمایی در هر بخش سیگنال‌ها مورد تجزیه و تحلیل قرار گرفت.

نتایج

ابدا به عنوان یک مطالعه آزمایشی و برای حصول اطمینان از تکرار‌پذیری نتایج، شاتل‌بندی بر روی سطوح مدل، لاتال و روی کشکک زانوهای راست ۴ فرد سلام گذاشته شد و تست مورد نظر انجام گردیده و میانگین مجزور کای در هر سه محل به دست آمد. نتایج حاصله اطمینان از قابلیت تکرار پذیری تست یارا محققان اینکه کرد (ICC=0.9) پس از آن، تست بر روی نمونه‌ها انجام گردید.

بررسی نتایج میانگین مجزور کای در هر یک از سطوح مدل، لاتال و روی زانو نشان داد که گرچه زانوهای دچار استثمارتی، دارای میانگین مجزور کای کمتری از زانوهای سالم در هر سه محل لاتال، مدل و روی کشکک بودند، ولی این نتایج متحمل ایجاد نبود (نمودار ۱).

بررسی‌های دقیق تر نشان داد که این کاهش بین زانوهای چپ و راست مشتاق عمل می‌کند. به همین دلیل نتایج در شکل ۱ نشان داده شده است.

![نمودار ۱: میانگین مجزور کای بین زانوهای طبیعی و دچار استثمارت در سطوح مختلف](downloaded from journal.rums.ac.ir at 11:49 +0430 on Wednesday April 8th 2020)

شکل ۲- نمونه‌ای از سیگنال‌های لبه شده در محل روی کشکک در زانوهای نرمال
بحث
نتایج تحقیق حاضر حاکی از تفاوت‌های مشهودی بین زانوهاي سالم و دزتارتيو از نظر شدت و شکل سیگنال‌ها بود که موافق بافت‌های بسیاری از محققین گذشته بود. به طوری که با بررسی سیگنال‌ها به خوبی می‌توان اظهار داشت که کدام سیگنال مربوط به زانوهاي سالم و کدام یک مربوط به زانوهاي دزتارتيو، دیگر استوآرت‌بریت بطور کلی دارای سیگنال‌هایی استفاده های و تواناکننده (و تهیه‌می‌نمایاند) محدود کرای کمتر) نسبت به زانوهاي سالم بودند. در زانوهاي دزتارتيو، کوپنوسهای فیزیولوژیک بالینی امکان‌پذیر است. این نتایج نشان داد که اول‌اکنون مجموع میانگین مجذور کلی در هم سه سطح میدان، لاتزال و روی، کشکش در زانوهاي دزتارتيو کمتر از زانوهاي سالم بود. جهت تحقیقی چنین دیآر استوآرت‌بریت، به شدت دارای میانگین مجذور کلی کمتر از زانوهاي دزتارتيو سالم بودند و این تفاوت در هر سه سطح مشهد و در روی کشکش معنادار بود. این مسئله شاید نشان دهنده حساس‌تر بودن محل رویی کشکش که بررسی تغییرات دزتارتيو می‌باشد با مطالب بانی شده توسط Shen و همکارانش (1995) موافق‌ت‌زادر دارد [15]. آنچه در این تحقیق به دست آمد

محققین را به این نکته هر یک از زانوهاي دزتارتيو از مردان سالم شاخص برهنگی در وجود یا عدم وجود تغییرات دزتارتيو مفصلی باشد.

این نکته که با افزایش تغییرات دزتارتيو از مردان سالم افزایش یافته است، متعلقی به نظر می‌رسد. چرا که اگر به خاطر باوریم که این تغییرات دزتارتيوی همان عاملی بوده در زانوهاي دزتارتيوی کمتر شده و چنانچه شناخته شده در دادگاه غیرکاری مربوط به سیگنال‌ها با دشتی نیز نشان دهنده گفتگو، هستند (16) و با شروع تغییرات دزتارتيو از مردان سالم و راحتی انجام حرکات که می‌شود، تحت‌البند حرکات زمینه‌ای فوق کمتر شده و حرکات درون مفصلی به جای ترون و روان به صورت خشن و بان‌دیده پر‌شی (Jerky Movements) (1988) (Nagata 1988) برکه که بیان کرد که در زانوهاي مبتنی به آرترز که غیرشیوع کمی سخت شده است، سیگنال‌ها به صورت نامتظم، غیر تکراری و نیز می‌باشد. از همچنین دو نوع باستایاپین (L type) و بالا در زانو شناسایی نمود و بان داشت که سیستم بالا نشان دهنده سخت و ضخیم شدن غیرشیوع مفصلی است. در نهایت اگر اعلام داشت که سیگنال‌ها مفصلی می‌توان معرف تغییرات مربوط به استوآرت‌بریت زانوهاي دزتارتيو. و همچنین اعلام کرد که تغییرات مشاهده شده در رادیوگرافی مرتبط با شاخص با دشتی پایین
نتیجه گیری

می‌توان گفت که این مطالعه نشان داد که اول‌اً ویبروآرترودگرافی به‌روش غیر تحقیق و مقیاس‌های در پرسی و

تشخیص استوارت‌زایینی وی‌می‌باشد. بنا بر نیز و همکارانش در ۱۹۸۰ در مطالعه‌ی به بررسی فن‌آوری آرترودگرافیکی در ۱۹۸۹ به‌روش با زانوهای دچار مشکل پرداخته بودند و با استفاده از صداهای نیز، نشان دادند که ۴ گروه شامل بیماران دچار استوارت‌زایینی منشتر و پیش‌تر، کندرمولاسی یکتا (درمی‌غش تورم زینک) که دان آرتروز جوانان نیز گفته می‌شود. ضایعات مینیسک (ضربه گیرهای شکل داخل زانو) و صدمات لیگامنتی (رابطه) را از هم‌افراط دهد (۱۷).

نکته مهم دریگر این گونه مطالعات، استفاده از فیلترینگ مناسب برای کاهش هر چیز بستر صداهای مزراعی می‌باشد و همکارانش (۱۹۹۴) روش‌های حذف انقباضات غضروفی که یکی از عوامل صداهای مزراعی معرفی شدند، ابتدای گردید. این یک مطالعه‌ی که چه در انتهای استفاده از فیلترینگ توانتسان است یک حداکثر زبان و این نیز ها را که کنند چه‌چیره با هم‌افراط دیده‌ایست نیز که در حالی‌که می‌باشد به این توازن از سیگنال‌های ویبروآرترودگرافی نیز در همین محدودیت‌های مشاید این سیگنال‌های نیز با این نوع فیلترینگ حذف می‌شود. این اساس، آن مدل جدید یابکشند؛ که انقباضات غضروفی با به‌طور انتخابی فیلتر می‌کرد و سیگنال‌ها را خالصی نشان می‌داد. و Mousavi و همکارانش (۱۹۹۶) نیز شاهسنج نیز بر روی وسط کشک شگاهی و روش‌هایی را در دست‌بندید سیگنال‌های شیب‌خت و ویربروآرترودگرافی استوداین نمودند (۱۸۳). همکارانش نیز روش‌های مختلف دسته بندی سیگنال‌های ویبروآرترودگرافی را بررسی کردند و میزان موثریت با این روش را در ضایعات داخل زانو/۸۹ تا در ضایعات بافت‌های پوست‌وزانو که (۱۹۵) اعلام نمودند، بنا بر رابطه خاصی را در جهت کاهش صداهای مزراعی ابتدای مانند که بر اساس آن اعلام کرد واکنش که حساسیت کلی این روش را تا (۱۸۳) بالا برخوردار (۱۸۴). اکستروالی (۱۳۸۲) نیز دست‌بندید دیگری ایجاد نموده و پیش‌تری بی‌روان را بر اساس آن افتراق داد و اعلام نمود که حساسیت آن حدود ۹۰% می‌باشد (۲۱).
References


