مقاله پژوهشی
pering-tailed V, و IV قشر
بارل (بشکه‌ای) در موس صحرایی
محمدرضا آفینی‌فرد

واژه‌های کلیدی: قشر بازل، هسته راهی خلفی، موس صحرایی، تحريك الکتریکی

چکیده
زمینه و هدف: مسیر سورتونزیک یکی از سیستم‌های تعادل کننده می‌باشد که به طور عمدی از هسته راه خلفی شروع می‌شود. در این پژوهش به منظور بررسی نقش سورتونزیک در پردازش حسی، به مطالعه اثر تحريك الکتریکی هسته راه پاسخی نورون‌های IV و V قشر حسی اولیه موس‌های صحرایی مربوط
به ناحیه سری‌پلا (Dorsal Raphe Nucleus) پرداخته است.

مواد و روش‌ها: در این مطالعه تجربی از 20 سر موس صحرایی بالغ نژاد Wistar با وزن 250-350 گرم استفاده شد. هسته راه خلفی در زمان‌های ۵۰، ۱۰۰، ۲۰۰ و ۴۰۰ میلی‌ثانیه قبل از خم نمونه سبل اصلی یا سبل کناری به تنها و یا قبل از خم شدن توان سپیل اصلی اثر تحريك الکتریکی هسته راه خلفی بر میدان دیافتنی مهاری نورون‌های قشر بازل، سبل اصلی یا سبل کناری جا به جا می‌شد.

یافته‌ها: اثر تحريك الکتریکی هسته راه خلفی موجب کاهش اندازه پاسخ On نورون‌های لاایه V به جا به چپ سبل اصلی یا سبل کناری و درمانه شد. در زمان‌های ۵۰، ۱۰۰، ۲۰۰ و ۴۰۰ میلی‌ثانیه قبل از جا به چپ سبل اصلی نورون‌ها افزایش یافت (به ترتیب ۵، ۷، ۹، ۱۱) در حالیکه در زمان‌های بعد از جا به چپ سبل اصلی نارسایی نداشت.

نتیجه‌گیری: نتایج مطالعه حضرت پیشنهاد می‌کند که هسته راه خلفی نقش تنظیمی بر پردازش اطلاعات در قشر حسی
پیکر حسی اولیه موس صحرایی دارد.

1. کارشناس ارشد، مرکز تحقیقات علم اعصاب، دانشگاه علوم پزشکی کرمان
2. (نوبت‌نده مسئول) استادیار گروه آموزشی فیزیولوژی، مرکز تحقیقات علم اعصاب، دانشگاه علوم پزشکی کرمان
vsheibani2@yahoo.com
تلفن: ۰۲۱۹۲۲۲۲۲۱۲۲، ۰۲۱۹۲۲۲۲۲۲۱۲، فاکس: ۰۲۱۹۲۲۲۲۲۲۲۱۲، پست الکترونیکی: vsheibani2@yahoo.com
3. استادیار گروه آموزشی ریستروپاتی، دانشگاه علوم پزشکی کرمان
4. مربی گروه آموزشی فیزیولوژی، دانشگاه علوم پزشکی رفسنجان
سروتونین با عنوان یک میان‌جی خصی تنش می‌دهد.

われわれは、モスキートの飛翔が、新しいストレス条件下での行動を影響することが示唆される。この結果は、モスキートの行動を制御するための新しいアプローチの可能性を示唆する。
تجربیات الکتروکینژیکی هسته رافه خلفی در زمان‌های ۵۰، ۱۰۰، ۲۰۰ و ۴۰۰ میلی‌ثانیه قبل از جا به جایی سیبیل اصلی یا کناری اعمال می‌شود. در زمان‌ها که سیبیل‌ها با هم و با اختلاف زمانی جا به جا می‌شوند، تحریک الکتروکینژیکی هسته قبل از جا به جایی سیبیل کناری انجام می‌شود. برای مقایسه اثر تحریک الکتروکینژیکی هسته بر پایش نورون‌ها در معرض تحریک الکتروکینژیکی هسته نیز جا به جا می‌شود. در کنار از تحریکات (با یا بدون تحریک الکتروکینژیکی هسته رافه) ۴۰ میلی‌ثانیه فرکانس هر کمایی از تحریکات ۱/۵، ۵/۵ هرتز تکرار می‌شود. در پایان آزمایش مغز حیوانات خارج و در فرمایش ۱۰٪ ثابت می‌شود. پس از انجام مراحل ثبت نورونی، با استفاده از نگ‌آرمی سیل، محل قرار گرفتن الکتروودها در هسته رافه خلفی مورد اندازه‌گیری می‌گردد.

۵- تجزیه و تحلیل داده‌ها: با استفاده از هیستوگرام‌های پس از تحریک (PSTH)، ابتدا پایش نورون‌ها در ۱۰۰ میلی‌ثانیه اول هر قابل ثبت جا به جایی که هیچگونه تحریک مکانیکی یا الکتروکینژیکی وجود نداشت به عنوان فعالیت خودیتودی مورد محاسبه قرار می‌گرفت. سپس بزرگی پاسخ‌ها بر حسب Response magnitude (Response) همبستگی پرسیده پایش تأثیر یافته در نظر گرفته می‌شود. پس از پایان ثبت نورون‌ها در زمان‌های مختلف تحریک هسته رافه خلفی از بزرگی پایش نورون‌ها در زمانی که سیبیل‌ها بدون تحریک هسته جا به جا می‌شوند کم می‌شود.

۶- پروتکل آزمایش: دو پروتکل جدایانه برای بررسی اثر تحریک الکتروکینژیکی هسته رافه بر پایش نورون‌ها پیشنهاد می‌شود. در پروتکل اول سیبیل‌ها اصلی و کناری بر پایش‌ها از test ratio (CTR) با میانگین اثری مساوی با ۷/۲ و ۴/۳ میلی‌ثانیه (P < 0.001). این پارامتر می‌شود که سیبیل‌ها با اختلاف زمانی ۳۰ میلی‌ثانیه جا به جا می‌شوند.
نتایج
بایان بررسی اثر تحریک الکتریکی هسته را به خواندن پاسخ نورونهای حسی قشر از 23 تعداد 200 مشاهده کرد. گرفته شد این تعداد 26 نورون در لایه IV و 17 نورون در لایه V قرار در قسمت دادن و با توجه به نورونهای در زمانی که سبیل های بوجود تحریک الکتریکی هسته جای به جای می‌شدند، در جدول 1 آورده شده است. مقایسه آماری نشان داد که نورونهای لایه IV دارای فعالیت خودکار در لایه V کمی بیشتری هستند نورونهای لایه IV با بزرگی بیشتری نسبت به نورونهای لایه V به جایی به جای سبیل اصلی پاسخ می‌دادند (p<0.05) و زمان تأخیر آن ها نیز کمتر بود (p<0.05). مقایسه بزرگی و تأخیر پاسخ سلولی ها به جا به جای سبیل کناری در بين دو لایه اختلاف معنی‌داری را نشان نداد.

<table>
<thead>
<tr>
<th>پاسخ سبیل کناری</th>
<th>پاسخ سبیل اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان تأخیر شرور (spike/stimulus)</td>
<td>زمان تأخیر شرور (spike/stimulus)</td>
</tr>
<tr>
<td>نورونهای دو لایه (On)</td>
<td>نورونهای دو لایه (On)</td>
</tr>
<tr>
<td>9±0.5/15</td>
<td>1/153±24/2</td>
</tr>
<tr>
<td>12/5±0/13</td>
<td>2/198±14/3</td>
</tr>
<tr>
<td>11/1±0/4</td>
<td>1/114±3/1</td>
</tr>
<tr>
<td>14/2±0/8</td>
<td>1/118±0/8</td>
</tr>
<tr>
<td>On</td>
<td>IV (n=34)</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>9/5±0/9</td>
<td>1/02±0/18</td>
</tr>
<tr>
<td>1/4±0/21</td>
<td>1/115±1/3</td>
</tr>
<tr>
<td>9/3±1/5</td>
<td>1/118±0/8</td>
</tr>
<tr>
<td>On</td>
<td>IV (n=17)</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

جدول 1: مقایسه فعالیت خودکاری، آنالیز و زمان تأخیر پاسخ On و Off پاسخ نورونهای لایه IV و و اندازه جنگل در هر سیکل راهنما به دست آمده استفاده از Mann-Whitney test و Friedman test و نیز تایپامتریک مورد بررسی قرار گرفتند. همچنین Wilcoxon signed ranks باعث جنگل در لایه IV و و اندازه جنگل در هر سیکل R به عنوان سطح ممنوعی در نظر گرفته شد.

کناری لاه سبیل های اصلی و کناری

همان‌گونه که نمودار 8 نشان می‌دهد، تحریک الکتریکی هسته را به خواندن پاسخ نورونهای قشر از 23 نورون در لایه IV و 17 نورون در لایه V (On) و افرازی در بزرگی پاسخ نورونهای لایه IV می‌شود (هرچند که معنی‌دار نبود). همچنین تحریک الکتریکی هسته را به خواندن پاسخ

الف- اثر تحریک الکتریکی هسته را به خواندن پاسخ نورونهای لایه IV و و اندازه جنگل در هر سیکل R به عنوان سطح ممنوعی در نظر گرفته شد.

دریافتی تحریک: برای بررسی اثر تحریک الکتریکی هسته را به خواندن پاسخ نورونهای لایه IV و و اندازه جنگل در هر سیکل R به عنوان سطح ممنوعی در نظر گرفته شد. تحریک الکتریکی هسته در زمانهای 50، 100، 200 و 400 میلی‌ثانیه قبل از جا به جای سبیلها اعمال شد.
در صورتی که تحریک الکتریکی هسته رافه رابطه‌ای بر نورون‌ها در پاسخ به جایی سبیل اصلی نیز Off و On اختراع می‌شود (نمونه‌بندی 2-A و B).

تحریک الکتریکی هسته رافه رابطه‌ای بر نورون‌ها در پاسخ به جایی سبیل اصلی نیز Off و On اختراع می‌شود (نمونه‌بندی 2-A و B).
چ- اثر تحریک الکتریکی هسته رافه خلقی بر میدان دربافت مهره‌های نورون‌ها برای بررسی اثر تحریک الکتریکی هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان تغییرات CTR را در زمان‌های ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌ثانیه نشان می‌دهد. همان‌طور که از نمودار IV بنا به CTR میزان پاسخ On نورون‌های لاشه IV و آن‌ها در صورت نبودن CTR، پاسخ سیگنال‌های نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On N200 میلی‌ثانیه دارد و پاسخ IV میزان هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان تغییرات CTR را در زمان‌های ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌ثانیه نشان می‌دهد. همان‌طور که از نمودار IV بنا به CTR میزان پاسخ On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On N200 میلی‌ثانیه دارد و پاسخ IV میزان هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان تغییرات CTR را در زمان‌های ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌ثانیه نشان می‌دهد. همان‌طور که از نمودار IV بنا به CTR میزان پاسخ On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On نورون‌های لاشه IV و آن‌ها در صورت نبودن On N200 میلی‌ثانیه دارد و پاسخ IV میزان هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان تغییرات CTR را در زمان‌های ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌ثانیه نشان می‌دهد. همان‌طور که از نمودار IV بنا به CTR میزان پاسخ On نورون‌های لاشه IV و آن‌ها در صورت نبودن On N200 میلی‌ثانیه دارد و پاسخ IV میزان هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان تغییرات CTR را در زمان‌های ۱۵۰، ۳۰۰ و ۴۰۰ میلی‌ثانیه نشان می‌دهد. همان‌طور که از نمودار IV بنا به CTR میزان پاسخ On N200 میلی‌ثانیه دارد و پاسخ IV میزان هسته رافه خلقی در زمان‌های مختلف بر میزان مهره‌های نورون‌ها، سیگنال‌های بیس از سیستم کناری جنید. نمودار ۴ میزان T
در پایه سلولی نرونهای قشر شده باشد. هرچند اعتقاد بردین است که بعضی از ویژگی‌های پایه نرونهای مسئول مهار جانی مربوط به یافته داخل قشر می‌باشد [11]. اثر موتوری که به دنبال تحریک الکتریکی هسته را ویران می‌کند این پایه نرونهای لایه IV در این مطالعه دیده شد. می‌تواند ناشی از ناتوانی ما در افتراق بین محل نرونهای در باریکه‌های دیگر پایه‌های گروه آنها باشد.

نتیجه‌گیری

این مطالعه نشان داد که هسته را ویران کننده موج تغییر در ویژگی‌های پایه نرونهای و تنظیم برداری ادلات‌های حسی پیکری در قشر بالار موش مصرف می‌شود. هرچند که این اثر می‌تواند ناشی از راهاسای سروتونین به دنبال تحریک الکتریکی هسته باشد. تیبیین این نتایج مستلزم مطالعات بیشتر و تکنیک‌های آزمایشگاهی برتری می‌باشد تا بدان و سیله‌گام‌های استوارتری در جهت تعالی داشت. بشری برداشتی شود.

References

[10] Puig MV, Artigas F, Celada P. Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe
stimulation in vivo: involvement of serotonin and GABA. 
Inhibition of spontaneous and evoked unit activity in the rat 
medial prefrontal cortex by mesencephalic raphe nuclei. 
of neuronal activity in the rat ventromedial prefrontal cortex 
by midbrain-raphe nuclei: role of 5-HT1A receptors. 
modulates neuronal activity in rat intergeniculate leaflet. 
[14] Chiang CY, Hu JW, Dostrovsky JO, Sesle BJ. Changes in 
mechanoreceptive field properties of trigeminal 
omatic sensory brainstem neurons induced by stimulation of 
Influence of ascending serotonergic pathways on glucose 
use in the conscious rat brain. II. Effects of electrical stimulation 
[16] Follett KA, Gebhart GF. Modulation of cortical evoked 
potentials by stimulation of nucleus raphe magnus in rats. J 
[17] Iwayama K, Mori K, Fukushima M, Yamashiro K. Effect of 
midbrain raphe nucleus stimulation on somatosensory 
[18] Paxinos G, Watson C. The Rat Brain in Stereotaxic 
Coordinates, San Diego; Academic Press. 1986; pp: 49
éonatal C-fiber depletion on the integration of paired-whisker inputs in rat barrel cortex. Exp Brain Res, 2005; 
[20] Simons DJ, Carvell GE. Thalamocortical response 
transformation in the rat vibrissa/barrel system. J 
Quantitative effects of GABA and bicuculline methiodide on 
receptive field properties of neurons in real and simulated 
[22] Read HL, Beck SG, Dun NJ. Serotonergic suppression of 
interhemispheric cortical synaptic potentials. Brain Res, 
[23] Aghajanian GK, Marek GJ. Serotonin induces excitatory 
postsynaptic potentials in apical dendrites of neocortical 
[24] Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-
hydroxytryptamine 1A receptors mediate opposing 
responses on membrane excitability in rat association cortex. 
[25] Davies MF, Deisz RA, Prince DA, Peroutka SJ. Two distinct 
effects of 5-hydroxytryptamine on single cortical neurons. 
[26] Sheldon PW, Aghajanian GK. Serotonin (5-HT) induces 
IPSPs in pyramidal layer cells of rat piriform cortex: 
evidence for the involvement of a 5-HT2-activated 
[27] Waterhouse BD, Moises HC, Woodward DJ. Interaction of 
serotonin with somatosensory cortical neuronal responses to 
afferent synaptic inputs and putative neurotransmitters. 
[28] Harandi M, Aguer M, Gamrani H, Didier M, Maitre M, 
Calas A, et al. Gamma-aminobutyric acid and 5-
hydroxytryptamine interrelationship in the rat nucleus 
raphe dorsalis: combination of radioautographic and 
[29] Simpson KL, Waterhouse BD, Lin RC. Differential 
expression of nitric oxide in serotonergic projection neurons: 
neurochemical identification of dorsal raphe inputs to rodent 
trigeminal somatosensory targets. J Comp Neurol, 2003; 
466(4): 495-512.
baclofen and phaclofen on receptive field properties of rat 
[31] Torres-Escalante JL, Barral JA, Ibarra-Villa MD, Perez-
Burgos A, Gongora-Alfaro JL, Pineda JC. 5-HT1A, 5-HT2, 
and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 
somatosensory rat cortex as evaluated by the paired pulse 