خلاصه

نکته‌ی تکنیکی: نتایج حاکی از این است که تیپ‌هایی از این سلسله‌ای ترکیب‌های متغیر تولید کننده تولید می‌شود. این روند در ناحیه‌ی بیماری‌های مختلف وسایط زنده می‌تواند اثرات بسزایی داشته باشد.

1- داشت که تیپ‌هایی از این سلسله‌ای ترکیب‌های متغیر تولید کننده تولید می‌شود. این روند در ناحیه‌ی بیماری‌های مختلف وسایط زنده می‌تواند اثرات بسزایی داشته باشد.

2- داشت که تیپ‌هایی از این سلسله‌ای ترکیب‌های متغیر تولید کننده تولید می‌شود. این روند در ناحیه‌ی بیماری‌های مختلف وسایط زنده می‌تواند اثرات بسزایی داشته باشد.

3- داشت که تیپ‌هایی از این سلسله‌ای ترکیب‌های متغیر تولید کننده تولید می‌شود. این روند در ناحیه‌ی بیماری‌های مختلف وسایط زنده می‌تواند اثرات بسزایی داشته باشد.

کلمات کلیدی: متغیر تولیدنده، توصیفی، مبنایی، مشتقات ذهنی و تیپ‌هایی از این سلسله‌ای ترکیب‌های متغیر تولید کننده تولید می‌شود. این روند در ناحیه‌ی بیماری‌های مختلف وسایط زنده می‌تواند اثرات بسزایی داشته باشد.
نیکاراژین) تا میان زیادی به کانال‌های کلسیمی عضلات صاف داشته و به علت گازی کردن عروق شرینی عمل می‌کند و اثر زیادی بر ضخامت قلب دارد. گروه فیتآلکیرل آمینه (مثل وربابایما) که تا میان زیادی به قلب دارد و به ت/github.com/4ر بیشتر بومی از آن جهت سپرده و گزینه دارند. افراد متغیر و وضعیت اینتروپوپوش آن که تحت تأثیر غلظت کلسیم می‌باشند، کنترل می‌شود. مقاومت محیطی عمده‌ای می‌شود که تحت تأثیر انقباض پایه عروقی که خود وابستگی زیادی به قلب دارد. شاخه غلظت عروقی دارد، قرار می‌گیرد. مطالعات انجام شده نشان داده است که اگر عروقی می‌باشد به فرشاری خون صرف نظر از علت وجود آنروده بیماری مقاومت عروقی محیطی افزایش می‌یابد. لذا مهم‌ترین بته است که علت افزایش مقاومت محیطی، تغییر عروقی ناشی از افزایش غلظت داخل سلولی کلسیم ممکن است از یک نقص ارثی در شیمی‌دان نشان داد که نیکاراژین در سگ‌دارهای فشار خون ناشی از نارسایی کلیه، کاهش قابل ملاحظه‌ای در فشار خون شریانی ایجاد می‌کند اما این کاهش همراه با انزیم رلفکسی ضربان قلب می‌باشد.[10]}

لورکانیت (1988) لل مطالعه‌بر روي موش صحرایی مشاهده کرد که آنگونونیسته‌های کلسیم باعث ایجاد خیز محیطی بیماران فشارخونی می‌شود.[7] آن اثر مربوط به تأثیر آنگونونیسته‌های کلسیم بر نفوذپذیری عروقی می‌باشد.[11] لدویلپوسو و همکاران (1997) بر اساس مطالعه‌ای که بر روی موش صحرایی بیماران مقایسه اثرات همودینامیک الگولیپینی به نیفت‌پاز انجام دادند. نتیجه گرفته که الگولیپین نیز هم‌اکنون نیفت‌پاز فشار خون قلی - عروقی اثر به شمار می‌روند [3]. فشار خون تحت تأثیر بروهرون ده قلبی و مقاومت عروقی محیطی می‌باشد. برنده به قلبی بیشتر بسیار عواملی از قبیل تعداد ضربان قلب و وضعیت اینتروپوپوش آن که تحت تأثیر غلظت کلسیم می‌باشند، کنترل می‌شود. مقاومت محیطی عمده‌ای تحت تأثیر هزاران انقباض پایه عروقی که خود وابستگی زیادی به قلب دارد. شاخه غلظت عروقی دارد، قرار می‌گیرد. مطالعات انجام شده نشان داده است که اگر عروقی می‌باشد به فرشاری خون صرف نظر از علت وجود آنروده بیماری مقاومت عروقی محیطی افزایش می‌یابد. لذا مهم‌ترین بته است که علت افزایش مقاومت محیطی، تغییر عروقی ناشی از افزایش غلظت داخل سلولی کلسیم ممکن است از یک نقص ارثی در شیمی‌دان نشان داد که نیکاراژین در سگ‌دارهای فشار خون ناشی از نارسایی کلیه، کاهش قابل ملاحظه‌ای در فشار خون شریانی ایجاد می‌کند اما این کاهش همراه با انزیم رلفکسی ضربان قلب می‌باشد.[10]}

1- Whiting
2- Lacolley
3- Valdivieho
تحقیق قبیل ستزه گرده‌ان، ابتدا در یک مطالعه راهنما در سه گردوش بررسی شدند و از میان آنها به ترتیب زیرکه اثر به‌همتان انتخاب و اثرات آنها بر روی فشار خون، نیروی اقتصادی و ضریب قلب در گردوش مورد بررسی قرار گرفت.

ترکیب شماره 1 (C22H25N3O4S) (شکل 1-ب) که نام شیمیایی آن [میثیل-5-بنزیل-14-دی‌هیدرو-25-امیل-2-میثیل-1میثیل-5-امیل‌ازاوولیل) -3-5- پیریدین-دن کربوکسیلات و وزن مولکولی آن 246 و با یک انتخاب متقابل در مقایسه با نیفتیپین (شکل 1-الف) به جای گروه اورتونیروفین در موقعیت C4 گروه 1-میثیل-5-میثیل‌ازاوولیل و در موقعیت C5 به جای گروه میثیل کربوکسیلات نیفتیپین یک گروه میثیل کربوکسیلات یافت شد.

ترکیب شماره 2 (C28H29N3O4S) (شکل 1-ج) که نام شیمیایی آن [میثیل-14-دی‌هیدرو-25-دی‌میثیل-1میثیل-2میثیل-5-میثیل-5-امیل‌ازاوولیل-3-5- پیریدین-دن کربوکسیلات و وزن مولکولی آن 491 و با یک انتخاب متقابل در مقایسه با نیفتیپین (شکل 1-الف) به جای گروه اورتونیروفین در موقعیت C4 گروه 1-میثیل-5-میثیل‌ازاوولیل و در موقعیت C5 به جای گروه میثیل کربوکسیلات یک گروه میثیل کربوکسیلات یافت شد.

کانالهای کلسیمی، پلاس زیادی برای ستزه نسل دوم داروهای مشابه نیفتیپین که شروع آرامتر، اثر طولانی تر و فراهم زیستی بالاتری داشته باشند و به‌صورت تک دوز روزانه قابل استفاده باشند صورت گرفته است. روش شده است که به‌طور چاپی اگر ساختار در موقعیت C5 و C3 و C4 اختصاصی تر عمل کردن دارو نشته به دنبال تغییر می‌دهد [13]. در آزمایش‌های شیمی دارویی مواجهت پژوهشی، دانشگاه علوم پزشکی کرمان گروهی از مشترکهای نیفتیپین سنتز شده است که در میان آنها از نظر بر فشار خون، نیروی اقتصادی و ضریب قلب در گردوش مورد آزمایش قرار گرفته که از میان آنها به‌طور گزینه شدنان [14] در مطالعه حاضر 9 ترکیب دیگر ستزه از این گروه که با الکام از نتایج شریانی را با یک روش وابسته به دوز کاهش می‌دهد. هم‌نیاز دارو نسبت تغییرات فشار بطن به زمان (max dp/dt) مربوط به چپ را کاهش می‌دهد در حالی که تغییر قابل ملاحظه‌ای در فشار وارد مقدار ایجاد نمی‌کند. وقتی نیفتیپین تاکاردی رفع کننده اکسیرولانه به‌صورت تک دوز در درمان بیماران برای ضربانی خون که دچار بیماری‌های عروق کروتوئی تر به‌صورت مناسب باشند [10] با وجود این امتیاز‌های ناتوانی برای گروه کلیه‌نشین جدیدی که اثر طولانی تر و اختصاصی تر و فراهم زیستی بالاتری‌تر داشته باشند وجود دارد. با توجه به اهمیت و کاربرد زیاد داروهای مهارکننده کانالهای کلسیمی، تلاش زیادی برای بدست‌آوردن جدید این گروه به‌صورت فعالیت و اختصاصی تر عمل کردن دارو نشته به دنبال تغییر می‌دهند [13]. در آزمایش‌های شیمی دارویی مواجهت پژوهشی، دانشگاه علوم پزشکی کرمان گروهی از مشترکهای نیفتیپین سنتز شده است که در میان آنها از نظر بر فشار خون، نیروی اقتصادی و ضریب قلب در گردوش مورد آزمایش قرار گرفته که از میان آنها به‌طور گزینه شدنان [14] در مطالعه حاضر 9 ترکیب دیگر ستزه از این گروه که با الکام از نتایج
متیل کربوکسیلات، دو گروه فنیل کربوکسیلات جایگزین شده است.

این تصویر شامل سه عدد شیمیایی است که با معادلات مولکولی خاصی نشان می‌دهند.

ب - ترکیب شماره ۱
MW = 429

الف - نيفذین
MW = 346

ج - ترکیب شماره ۳
MW = 519

د - ترکیب شماره ۳
MW = 491

رنگ این تصویر به رنگ های سفید، سبز و سیاه است.

شکل: ساختار فرمولی کترینه نیفویل بوسیله ترکیب موجود در داده‌های شیمیایی به شکل گروه‌های اورتوپروپیل نیفویل و C4 به جای گروه اورتوپروپیل نیفویل تبدیل شده است. C5 و C3 سنتز شده‌اند.
مواد و روش‌ها
این مطالعه تجربی و آزمایشی بر روی 24 خرگوش از نژاد سفید نیوزلندی از هر دو جنس با محدوده وزنی 3-6 kg (در میانه 48 تا 356 تکمیل شدند)، انجام و اعمال زیر بر روی هر یک از حيوان‌ها انجام گردید. حيوان‌ها ابتدا به موسیله تزریق داخل صافی پنتوباربیتال سدیم (20 mg/kg) و تزریق داخل صافی دیازیم (با 10 mg/kg) در دوز اولیه 30 و 30 mg/kg نسبت به لایه‌های داخلی و خارجی خود درونهای مهار کرده کالسیم مورد آزمایش تداخل نمی‌آید. نای حیوان نیز تونات خانگی کانال‌ها را قطع و سپس کانال گذرگاه تخریب می‌شود و تزریق خون خوندهان از هوای معمول با از ترکیب گاز نیترانس نیایی و دو کانال پر شده از سرم یا سرم مصنوعی 742 (و یا هیترین در میلی لیتری - اتانامات) داخل سیمان و داخل و درون رانی گذاری می‌شود. کانال شرائیت گردش تیغ فشار خون و کانال وریدی جهت تزریق دوزهای تکمیلی پنتوباربیتال و نیز تزریق فنی افرین بوسیله پمپ اینفیوزن استفاده شد. کانال گذاری وریدی گواره جهت تزریق داروهای مهار کننده کالسیمی شامل نیتراین (داروی پخش - ایران) و ترکیبات صناعی جدا انجام گردید. استفاده از مسیری مستقل جهت تزریق این داروهای به منظور صورت گرفته که از داخل اثر دیگر داروهای مورد استفاده (چون p<0.05).
دو روش آماری:

ضرایب قلب در هر مرحله با استفاده از منحنی فشار ضرایب قلب در هر مرحله با استفاده از منحنی فشار به شکلی به مقدار زیاد لب شده بود. معادله گردید. میانگین تغییرات ساختمان فوک در یک گروه غیوه در اثر ترکیب صناعی با میانگین تغییرات آنها در اثر نیفیدپین و همچنین برای مقایسه اثر غلظت های یکسان از همان کاذب در داروهای شرایط فشار غیوه خون طبیعی با اثر همان غلظت‌ها در فشار غیوه بالا از آزمون آماری استفاده شد. در صورت نمای زمینه مقایسه

یک گروهی در مورد منجری مذکور از آنالیز واریانس

پی چپ تایپ گردید.

مربع دار تقلیل گردید.
نتایج
الف- اثر محلول 3 میکروگرم و سه ترکیب
صناعی جدید بر فشار خون، نیترو انقباضی و ضربان قلب
در فشار خون طبیعی و فشار خون با داشت ترکیب (MAP)
(پس از مصرف 3 میکروگرم) را به میزان 0/9 درصد و
درصد و ضربان قلب (HR) را به میزان 0/8 درصد افزایش داد.
در حیوان با فشار خون بالا در اثر ترکیب همین مقدار
 Nileprotin به میزان 1/11 درصد و MAP مقدار پایه
در شرایط فشار خون طبیعی به میزان 5 ± 72/10 میلی
متر جیوه در شرایط فشار خون بالا به میزان 118 ± 10 میلی
متر جیوه بود. مقادیر پایه و dp/dt HR در شرایط
فوق به ترتیب 359 ± 1301 و 51 ± 204 میلی متر
جیوه بر اساس و 1 ± 286 ± 0/8 ± 331 ضربان در دقیقه بود.
در شرایط مشابه با Nileprotin، یک میلی لیتر از محلول 10-1 میلی
ترکیب شماره 1 (عینال 1/2 میکرو گرم) در شرایط با
فشار خون طبیعی و فشار خون بالا به ترتیب MAP
در شرایط ترکیب dp/dt مقدار پایه به میزان
در شرایط داشت که در مدل
مدل داده شده است. اثر ترکیب بر
ین دار ضعیف تر از Nileprotin بود ولی اثر آن بر نیترو
انقباضی مشابه Nileprotin بود.
در گروه عکس
Nileprotin بود (شکل 3). با ترکیب محلول 10-1 میلی
ترکیب شماره 3 (معدل 1/5 میکرو گرم) به یک گروه دیگر
حیوان به ترتیب 3 میکرو گرم) کاهش ایجاد شده در شاخص
در هر دو شرایط فشار خون طبیعی و
MAP dp/dt MAR
فشار خون بالا کمتر از Nileprotin بود. هر چند اثر این

شکل 1: نمودار تغییرات در فشار متوسط شرایط بر
MAP در شرایط dp/dt
فشار خون طبیعی.

شکل 2: نمودار تغییرات در فشار متوسط شرایط
در MAP dp/dt.

شکل 3: نمودار تغییرات در فشار متوسط شرایط
در MAP dp/dt.

شکل 4: نمودار تغییرات در فشار متوسط شرایط
در MAP dp/dt.
نکته ۲-۳: نمایش تغییرات ضربان قلب در خرکوش‌های سورده آزمایش در اثر تریک تک‌میلی از محلول ا۰ مولار نیتی‌کس و ترکیبات بیان شده در ۴ شرایط فشار خون طبیعی و فشار خون بالا. ترکیبات شماره ۲ و ۳ به خلاف نیتی‌کس ضربان قلب را کاهش داده‌اند.

ب- اثر محلول ا۰ مولار نیتی‌کس و سه ترکیب

صدا نیتر بار در فشار خون نیترو انتفاشی و ضربان قلب در فشار خون طبیعی و فشار خون بالا. بررسی اثرات محلول نیتی‌کس (۰ مولار) در فشار خون طبیعی و شرایط فشار خون بالا کاهش داد، در صورتی که همین محلول نیتی‌کس (۰ مولار) در فشار خون طبیعی و HR می‌تواند چه در شرایط فشار خون بالا افزایش داد (نکته ۳) مقادیر پایه فشار متوسط شرایطی در شرایط ضربان خون طبیعی/۳۵ ±۷/۶ و در شرایط فشار خون بالا/۹۷۷/۲ می‌باشد. بوید. تأثیر محلول ا۰ مولار ترکیب شماره ۱ (محلول ۴۵۶ میکرون) در شرایط فشار خون طبیعی و در شرایط فشار خون بالا نسبت به نیتی‌کس کاهش کمتری در HR و ضربان قلب قابل توجهی پیدا نمی‌کند که از نظر آماری معنی‌دار است. تأثیر محلول ا۰ مولار ترکیب شماره ۲ (محلول ۴۹۱ میکرون) به سه شاخص HR, MAP, و MAR مشابه ترکیب شماره ۱ و اختلاف آن با نیتی‌کس معنی‌دار نیست. اثر محلول ا۰ مولار ترکیب شماره ۳ (محلول ۲۶۹ میکرون) در شرایط فشار خون طبیعی و در شرایط فشار خون بالا نسبت به میزان ضعیف‌تری در مقایسه با نیتی‌کس کاهش داد. اثر این ترکیب بر ضربان قلب نیز مشابه با نیتی‌کس بوید. اما اثر آن از لحاظ آماری ضعیف‌تر بود (نکته ۳).
خشک‌سازی نمایش تغییرات ضریب قلب در خرگوش‌های مورد آزمایش در اثر تزریق بکم، می‌توان از مولکول‌های باین‌تشرده در آن تزریق، کاهش خون مشابه و کاهش خون بالا تفسیر کنید. در مقایسه با همراهی‌ها که در اثر تزریق بکم ایجاد شده استست.

بحث

مشخصات دیهدورپرپدین دسته‌ای داروها و مهار کندن کانال‌های کلسیمی می‌باشد که امروزه کاربرد وسیعی در درمان بیماری‌های قلبی-عروقی بیشتری کنترل پرفشاری خون دارد. این داروها با مهار کانال‌های کلسیمی که میزان تراکم آنها در عضله صاف عروقی بالا می‌بایست، ورود کلسیم خارج سلولی را به داخل سلول‌ها کاهش داده و نهایتاً سبب شلی عضله صاف عروقی و کاهش مقاومت عروقی پایه می‌شود و در نتیجه فشار خون در مورد ایستاده را کاهش می‌دهند. کاهش مقاومت عروقی پایه به‌طور عمده در بخش‌های پستانی بیشتر در محل شریانی صورت می‌گیرد (۱۲). اگر چه اثر مستقیم این داروها برقلب، مهار ورود کلسیم و کاهش فعالیت آن است و لی افقت فشار خون در اثر بروز از آنها مانند نیکدوبین با تکیکارده‌ها و تکیکارده‌ها دارد که به‌جز آب‌های کار قلب و نیاز آن به آکسیژن به عنوان یکی از اثرات اصلی این داروها محسوس شده و کاربرد آن را در بیماری‌های ایسکمیک قلبی فرو رفت. این امر احتمالاً به اینکه در این داروها کاهش خون به‌طور کلی بدون عوقب فرو رفت. این امر احتمالاً به اینکه در این داروها کاهش خون به‌طور کلی بدون عوقب خون متوسط شریانی، نیروی اتفاقی و ضریب قلب در مقایسه با دو تکیکارده و نیکدوبین: تزریق و روبه‌روی این تکیکارده، فشار متوسط شریانی را کاهش داد ولی این اثر قوی‌تر از نیکدوبین نبود به‌ویژه در اتفاقی مکانیسم‌های کاهش شده قدرت اثر آن تکیکارده را در پایین آوردن فشار خون شریانی افزایش

1- Kanda
2- Nordlander
ب: اثر ترکیب شماره ۲ بر فشار خون متوسط شریانی، نیروی انقباضی و ضربان قلب در مقایسه با دو ترکیب دیگر و نیافتد: ترکیب شماره ۴ فشار متوسط شریانی را کاهش داد، هر چند اثر ترکیب تنها بطور معنی‌داری از نیافته‌ها کمتر بود و در مقایسه با ترکیبات شماره ۳ و ۴ در هر دو علت بکار رفته و در هر دو سطح فشار خون تأثیر نسبتا قوی تری در کاهش فشار خون داشت. این ترکیب همانند نیافته‌ها اثر منفی بر نیروی انقباضی قلب داشته و از این نظر تفاوت معنی‌داری با نیافته‌ها نداشت و نشان می‌دهد که تغییرات ساختاری ایجاد شده به منفی آن تاثیر پذیری و تاثیر مثبت بر فشار و ضربان قلب دارد. به‌طور کلی از بیان‌های موجود می‌توان چنین ترجیح کرده که ترکیب شماره ۲ نیروی انقباضی قلب را در حدود مشاهده نیافته‌ها کاهش می‌دهد در حالی که برخلاف نیافته‌ها ضربان قلب را افزایش نداده و نیاز قلب را به اکسیژن نیز زیاد نمی‌کند و به صورت ابزاری به‌ضرر نمی‌یابد. به عبارت دیگر در آن که بتواند در حد نیافته‌ها فشار خون شریانی را کاهش دهد می‌تواند در درمان سرشاری خون در افراد دچار اختلالات عروق کرونری و دیگر بیماری‌های ایسکمیک قلبی استفاده شود.

ج- اثر ترکیب شماره ۳ بر فشار خون متوسط شریانی، نیروی انقباضی و ضربان قلب در مقایسه با دو ترکیب دیگر و نیافته‌ها: ترکیب وریدی ترکیب شماره ۳ نیز فشار متوسط شریانی را کاهش داد هر چند اثر آن به‌طور معنی‌داری ضعیف‌تر از نیافته‌ها بود، نتایج مطالعه نشان می‌دهد که تغییر ساختاری ایجاد شده قدرت اثر این ترکیب در پایین آورد فشار خون شریانی را
را نسبت به نیفادیپین کمتر کرده است، با توجه به اینکه میزان کاهش فشار خون متوسط شرایط در حد کاهش نیروی انقباضی می‌باشد، می‌توان نتیجه گرفت که کاهش فشار خون آن در اثر کاهش نیروی انقباضی قلب بوده و این ترکیب هیچ مزیتی بر نیفادیپین ندارد.

دانکر و همکاران (۱۹۸۵) نشان دادند که مکانیسم عمده برخی داروهای دی‌هیدروپریودیزین از قبیل نیفادیپین و نیکاردين، کاهش مقاومت محوطه می‌باشد. در مطالعه حاضر نیز مشخص شد که داروی نیفادیپین موجب کاهش مقاومت محوطه می‌شود زیرا میزان افت فشار خون متوسط شرایط توسط آن بیشتر از افت نیروی انقباضی قلب بوده است.

می‌تواند هیچ کدام اثر گشاد کندگی عروقی داشته باشد، زیرا میزان کاهش فشار خون متوسط آن‌ها از میزان کاهش نیروی انقباضی توسط آن‌ها بیشتر نیست. به طور کلی انتخاب بدست آمده چنین بر می‌آید که از بین سه ترکیب برسی شده، ترکیب شماره ۲ نیروی انقباضی قلب را در حدود نیفادیپین کاهش می‌دهد و به علت اینکه بر خلاف نیفادیپین ضریب قلب را افزایش نمی‌دهد می‌توان آن را در کنار دو ترکیب دیگری که در مطالعه قبلی [۱] مزیت‌هایی بر نیفادیپین داشته‌اند قرار داد و مطالعات تکمیلی در مورد افزایش کاهش‌گذی فشار خون توسط آن‌ها و برسی عوارض جانی احتمال آن‌ها انجام داد.
منابع

The Cardiovascular Effects of Three Novel Synthetic Calcium Channel Blockers in the Rabbit

H. Najafipour*, 1, SH. Rahmani, 2, AR. Foroomadi, 3
1- Associate Professor of Physiology, Department of Physiology and Physiology Research Center, Kerman, Iran.
2- MSc in Physiology, Faculty of Medicine, Kerman, Iran
3- Associate Professor of Pharmaceutical Chemistry, Kerman University of Medical Sciences, Kerman, Iran.

Background: Calcium channel blockers are important group of drugs that have been used in the treatment of a variety of cardiovascular diseases especially hypertension. In this study we have investigated the effects of three newly synthetized ester analogs of nifedipine (Compounds No. 1, 2 and 3) compared to nifedipine on mean arterial pressure, dp/dt (cardiac contractility index) and heart rate in rabbits.

Materials and Methods: This study was carried out on 24 white New Zealand rabbits in three groups. Rabbits were anaesthetized with diazepam and sodium pentobarbital. The right femoral vein and artery were cannulated for injections (phenylephrin and sodium pentobarbital) and record of arterial blood pressure respectively. Right jugular vein was cannulated for injection of synthetic compounds. Another cannula was inserted in right carotid artery and pushed slowly to left ventricle to record the left ventricular dp/dt as a measure of cardiac contractility. Then the new compounds were tested in two stages. In the first stage during normotensive conditions, 1ml nifedipine (10⁻² M) and five minutes later 1ml of the new compounds were injected through the jugular vein during 1 minute and their effect on arterial blood pressure and left ventricular dp/dt was recorded. Twenty minutes later when arterial blood pressure returned to basal level, 1ml of 10⁻³ M nifedipine and each of the synthetic compounds were injected. In the second stage, arterial blood pressure was increased by 20 mmHg with continuous phenylephrin infusion and then the first stage experiments were repeated in hypertensive conditions.

Results: The results showed that in hypertensive conditions, 10⁻³ M of nifedipine reduced the mean arterial pressure (MAP) and dp/dt by 22.1%, and 19.7% respectively, and increased the heart rate (HR) by 4.8%. Compound 1 reduced MAP by 7.5%, and dp/dt by 8.3% but had no effect on HR. Compound 2 (10⁻³ M), reduced MAP, and dp/dt by 9% and 11.2% respectively, but had no effect on HR. Compound 3 decreased 10.2% MAP, and 7.6% dp/dt and increased HR by 1.4%. Compounds 1 and 2 significantly reduced heart rate compared with nifedipine (P<0.05). All three compounds with the concentration of 10⁻⁴ M had lower effect than nifedipine.

Conclusion: Overall this study showed that compound 2 is closer to nifedipine in reducing MAP and dp/dt, but does not increase HR. Although its lowering effect on BP is less than nifedipine, it may be selected for further investigation to increase its antihypertensive effect and probable side effects. Then it may be used in hypertensive patients with ischemic heart disease as it does not increase HR and O₂ consumption.

Keywords: Calcium Channel Blockers, New Dihydropyridine Derivatives, Hypertension, Cardiac Contractility, Heart Rate.

*Corresponding author: Email najafipourh@ kmu.ac.ir, tel: (0341)3221661-4

Journal of Rafsanjan University of Medical Sciences and Health Services, 2002, 2(1): 10-21