مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره ششم، شماره چهارم، زمستان 1386، 2-454
اثر مصرف خوراکی گیاه بولاغ اوتی (Nasturtium officinale) در کنترل قند و جریب در موسه‌های صحرایی دیابتی
نادر شهرخی، دکتر محمد خاکاری‌هادی، محمد شهبانی، دکتر محمدرضا حیدری
دریافت مقاله: 1383/12/14
ارسال مقاله به نوبنده: جهت اصلاح: 05/12/13
دریافت اصلاحی از نوبنده: 05/13/13
پذیرش مقاله: 1384/1/20
چکیده
زمینه و هدف: یکی از روش‌های درمان بیماران دیابتی استفاده از زیرهای غذایی گوناگونی می‌باشد. استفاده از گیاه بولاغ اوتی یکی از این روش‌هاست که در برخی از مناطق استان کرمان کاربرد دارد. در پژوهش حاضر اثرات گیاه بولاغ اوتی در کنترل قند و جریب پلاسمای موسه صحرایی دیابتی بررسی شده است.
مواد و روش‌ها: این مطالعه تجربی بر روی ۶۰ موسی مبتلا به دیابت در گروه دیابت گرم می‌باشد. در این گروه از حیوانات دیابتی/۱۵۰ جریب لیره عصاره آبی استنذوزوسین [STZ] استفاده می‌شود. در نواحی دیگری، از گروه دیابت گرم بکار می‌رود. در گروه دیابت گرم، به طور کوتاه مرد (بیمار) به روش گاز آز مصرف شد. در یک گروه از حیوانات دیابتی ۲۴ واحد اسپلین به NPH همراهی و در این مدت (به طور کوتاه مرد) به روش گاز آز مصرف شد.
روش‌ها در صفاعی داده‌ها و یک گروه دیابتی نیز تحت مراتب نیوژان می‌باشد. این مطالعه به‌طور تغییری قرار نگرفت. قند و جریب‌های خون در پایان زمان آزمایش اندام‌گیری شدند.
پایان‌ها: ممکن است جریب‌های خون کاهش محاسبه شده در میزان گلوکسولیا در مقایسه با گروه دیابتی نشان دادن که بیشترین کاهش (۷۶٪) توسط گروه دیابت گرم می‌باشد و در بازه مدت مناسب گروه دیابت گرم بیشترین کاهش (۱۰۰٪) در استفاده شده است. نتایج بهتر در غلظت‌های کلسترول تام و تری‌گلیسرید بلایم و بسته‌ی حیوانات دیابتی مشاهده نشد. هم دوز کم و هم دوز بالای (هسته‌های دیابتی) عصاره باعث افزایش HDL-کلسترول حیوانات دیابتی (۱۷۶/۲۳٪) و تری‌گلیسرید بلایم می‌باشد. نتایج تحقیق: مصرف هر دو دوز عصاره آبی گیاه بولاغ اوتی قادر به کاهش گلوکسولیا در حیوانات دیابتی است، اما از آن جایی که بر روی جریب‌های خون تأثیر بوده، از این طرف می‌توانست، مصرف آن برای کنترل قند خون در بیماران دیابتی با احتیاط پیشنهاد می‌شود.
واژه‌های کلیدی: بولاغ اوتی، گیاهان دارویی، گلوکسولیا، دیابت، شیرینی، جریب‌ها

1. استاد گروه آموزشی فیزیولوژی، مرکز تحقیقات فیزیولوژی، دانشگاه علوم پزشکی کرمان
2. استاد گروه آموزشی فیزیولوژی، مرکز تحقیقات فیزیولوژی، دانشگاه علوم پزشکی کرمان
3. استاد گروه آموزشی فیزیولوژی، مرکز تحقیقات فیزیولوژی، دانشگاه علوم پزشکی کرمان
4. استاد گروه آموزشی فیزیولوژی، مرکز تحقیقات فیزیولوژی، دانشگاه علوم پزشکی کرمان

mshahrokhsa@yahoo.com
نفری، انتظارتی: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
نفیس: ۰۲۱-۳۰۳۵۱۷۸، فکس: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
نفیس، دانشجویی: ۰۲۱-۳۰۳۵۱۷۸، ارتقاء صلاحیت: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
نفیس، دانشجویی: ۰۲۱-۳۰۳۵۱۷۸، ارتقاء صلاحیت: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
نفیس، دانشجویی: ۰۲۱-۳۰۳۵۱۷۸، ارتقاء صلاحیت: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
نفیس، دانشجویی: ۰۲۱-۳۰۳۵۱۷۸، ارتقاء صلاحیت: ۰۲۱-۳۰۳۵۱۷۸، دانشگاه علوم پزشکی کرمان
مقدمه

بیماری‌های دیابتی شیطین (مرض قند) بکی (از شاخ‌ترین بیماری‌های در جوامع امروز) می‌باشد و از لحاظ مزگ و میزان در جوامع غربی رتبه پنجم قرار دارد (1). با توجه به اثرات دیابت بر بیماری‌های قلبی عروقی، شاید سوءیان علت مزگ و میزان تغییرات این امکانات نسبتاً زیادی از مراقبت‌های ویژه کادری درمانی و بیمارسازی به افراد دیابتی اختصاص می‌یابد. این بیماری عوارض متعددی از قبیل عوارض متابولیکی، نفیروپاتی، رینوپاتی و دروماتیک را تجویز داده داشته که این امکانات زیادی را در طیلید و هزینه رضایت در رده‌های دیابتی ذکر می‌باشد (2). در دوره‌های غذا در دیابت می‌باشد، خصوصاً نوع غذایی و باقی‌مانده به (Non-insulin Dependent Diabetes Mellitus, NIDDM) انرژی (3).

نقطه مسئولیت دارد. انواع زیست‌نگاری‌های از درمان‌های بیماران دیابتی استفاده از گریه‌های تغییرات به عنوان یک عامل ضد آنژوکلاژ و استفاده زیادی از روزانه ماهی و افرازی شیمی‌های توصیه می‌باشد (2).

مصرف غذایی داروی غذاپذیری جانپیونت‌کننده دارد و از زمان‌های قدیم مصرف آن را رابط بو دارد (2) و در حال حاضر نیز استفاده از آن توسط سازمان بهداشتی بشریت، باید شده است (2). مصرف غذاپذیری از گیاهان دارویی در درمان دیابت مؤثر واقع شده است (5). گیاه بلات انسان (Narthurium officinalis), (water cress) است. گیاهان غذایی با سفاهه‌ای بالا روده است که ساچه‌ای چهارگوش، بزرگ‌های آن متابولیکی و شبیه به پر است. در انتخاب ساقه، خوشابی از آلیه سفید می‌روی میوه آن به سوخت خوردن نایب و استوای است. این گیاه در کلر جنوبیا، شمشیر و به طور عمده در مراکز دیابتی زلال‌جایی می‌روید (6). یکی از مناطقی که این گیاه در آن می‌روید منطقه جیرفت بوده و به عنوان چشم‌های

درد، شماره ۳، سال ۱۳۸۵

مجله دانشگاه علوم پزشکی رفسنجان

۱۴۶
روش عصارهگیری: روش عصاره‌گیری بولاغ اوی از پک بار در روز به روش پرکوله است که به صورت زیر انجام می‌گردد:

1. بهداشت و نیشتران از گونه ساردوییه شریستان جرفت جمع آوری شده بودند و توسط گیاه‌نشات تایید شد و تکرار می‌گردید و به روش پرکوله که در دمای 37 درجه در خانه انجام عصاره آمیزی تهیه شد. [14]

روش معترض: در گروه‌های تحت دارم‌نباش عصاره‌گیری از ادیبتهای اول و دوم، 15 و 25 میلی‌گرم بر کیلوگرم، در گروه کنترل دبیتی نیز، 4 و 20 میلی‌لیتر سالمی، به طور روزانه به روش گازه‌ای به حیوان داده شد [15] و در گروه تحت دارم‌نباشILL روی انسولین 2 واحد به ازای هر کیلوگرم وزن به طریق داخل چاقوی NPH تجویز شد. [16]

روش ادغام‌گرای بارآزمایی بیوشیمیایی: فند خون در مراحل قبل از آزمایش، سه روز بعد از آزمایش، دو هفته، چهار هفته و هشت هفته (بیش از حیوانات هشت هفته) بعد از آزمایش‌های عصاره‌گیری گردید. یک روز پس از اتمام دوره دارم‌نباش از حیوانات خون‌گیری شد و با دستگاه اتوآنالیز فلادین (one specific K) کلسسترول نام، تری‌گلیسرید LDL، کلسسترول بلاماسا می‌شد در سه مرحله عیان قبل از آزمایش، دو هفته و چهار هفته (و هشت هفته) بعد از آزمایش با دستگاه اتوآنالیز QBO اندازه‌گیری شد و همچنین محاسبه به دست آمد.

روش آماری: اطلاعات به دست آمده به وسیله آزمون‌های آماری آنالیز واریانس یک طرفه، آزمون Tukey test机组ی و نتایج تحلیل شدند. نتایج همه آزمایش‌ها به صورت Mean ± SEM گزارش شد و با شرط اختلاف معنی‌داری مشاهده گردید.

Downloaded from journal.rums.ac.ir at 2019-10-03 on Monday, September 2nd 2019
نتایج
نموناد ۱ میزان گلکوز پلاسما را در حیوان‌های دیابتی و کنترل نشان می‌دهد. میزان گلکوز پلاسما در حیوان‌های کنترل ۱۲/۸±۱/۴ میلی‌گرم بر دسی‌لیتر می‌باشد که در این اختلاف معنی‌دار با میزان گلکوز پلاسما در حیوان‌های دیابتی (۵/۲±۱/۵ میلی‌گرم بر دسی‌لیتر) مشاهده می‌شود.

جدول ۱. اثر گروه‌های مختلف تحت درمان بر میزان جریان‌های پلاسما در حیوان‌های دیابتی و کنترل

<table>
<thead>
<tr>
<th>شاخص</th>
<th>گروه</th>
<th>کنترل</th>
<th>دیابتی</th>
<th>انسولین</th>
<th>۷۵(۱)</th>
<th>۷۵(۲)</th>
<th>۲۵</th>
<th>دیابتی</th>
<th>انسولین</th>
<th>۷۵(۱)</th>
<th>۷۵(۲)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسترول</td>
<td>میلی‌گرم بر دسی‌لیتر</td>
<td>سایر گروه‌ها</td>
<td>۷۸/۲±۱/۱</td>
<td>۷۷/۵±۱/۲</td>
<td>۷۷/۵±۲/۳</td>
<td>۷۶/۸±۱/۱</td>
<td>۷۷/۵±۲/۳</td>
<td>۷۶/۸±۱/۱</td>
<td>۷۷/۵±۲/۳</td>
<td>۷۶/۸±۱/۱</td>
<td>۷۷/۵±۲/۳</td>
</tr>
<tr>
<td>تری‌کلسسترید</td>
<td>میلی‌گرم بر دسی‌لیتر</td>
<td>سایر گروه‌ها</td>
<td>۲۲/۵±۱/۳</td>
<td>۲۱/۵±۱/۴</td>
<td>۲۱/۵±۱/۴</td>
<td>۲۴/۷±۱/۲</td>
<td>۲۱/۵±۱/۴</td>
<td>۲۴/۷±۱/۲</td>
<td>۲۱/۵±۱/۴</td>
<td>۲۴/۷±۱/۲</td>
<td>۲۱/۵±۱/۴</td>
</tr>
<tr>
<td>HDL-c</td>
<td>میلی‌گرم بر دسی‌لیتر</td>
<td>سایر گروه‌ها</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
<td>۱۲/۶±۱/۳</td>
</tr>
<tr>
<td>LDL-c</td>
<td>میلی‌گرم بر دسی‌لیتر</td>
<td>سایر گروه‌ها</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
<td>۹/۲±۱/۳</td>
</tr>
</tbody>
</table>

جدول ۱: نموناد ۲ نشان داد که گروه دیابتی ۱ میزان گلکوز کنترل دیابتی و کنترل دیابتی نشان داده است.
نادر شاهروی و همکاران

مجله دانشگاه علوم پزشکی رفسنجان
دوره ۶، شماره ۴، سال ۱۳۸۵

حایل که مصرف دراز مدت دور بالای بولاغ اوتی (۲۵ میلی گرم بر کیلوگرم) این شاخص را ۹۶٪ میزان کرده است. همچنین تأثیر مصرف دراز مدت زیاد بولاغ اوتی بر پیشین از مصرف کوتاه مدت آن می باشد. مشاهده اثر مرحله بولاغ اوتی بر روی قد خون نشان می‌دهد که مصرف این گیاه در کنترل قد خون در دیابتی تجربی است. بولاغ اوتی احتمالاً از طریق مسیرهای زیر کاهش قند خون را موجب شده است:

1- با توجه به این که بولاغ اوتی حاوی مقادیر زیاد ویتامین C می باشد (۱۲-۱۰۳)، احتمالاً به همین دلیل می‌تواند واقع شده است، زیرا در بیماران دیابتی‌های شیرین از یک سو متاتولیپه‌‌های غیر ملی و بین‌تانین C و کاهش غلظت پلیسامیل آن از سوی دیگر افزایش استرس اکسیدانی و وجود دارد (۱۹-۱۷) و همچنین این امر در مراقبت‌های مورد استفاده در کاهش قند خون می‌شود (۲۰) و همچنین بکیشی از دلائل اصلی این افزایش، کمبود و بیشین C می باشد. بنابراین شاید افزایش این ویژگی به دلیل سیستم این گیاه کمبود یا جبران و چندین سیستم می‌باشد. سیستم‌های بیماری دیابتی، که در این گیاه وجود دارد. ۲- بکیشی از عنصری که فراوانی که در آییننده و وجود دارد، سیستم می باشد. ۱- ژن داشته است که کمبود مس در موش خانیایی باعث افزایش قند خون می‌شود. ۱- و همچنین این امر، می‌تواند در مراقبت‌های مورد استفاده در کاهش قند خون می‌شود (۲۰) و همچنین بکیشی از دلائل اصلی این افزایش، کمبود و بیشین C می باشد. بنابراین شاید افزایش این ویژگی به دلیل سیستم این گیاه کمبود یا جبران و چندین سیستم می‌باشد. سیستم‌های بیماری دیابتی، که در این گیاه وجود دارد. ۲- بکیشی از عنصری که فراوانی که در آییننده و وجود دارد، سیستم می باشد. ۱- ژن داشته است که کمبود مس در موش خانیایی باعث افزایش قند خون می‌شود. ۱- و همچنین بکیشی از دلائل اصلی این افزایش، کمبود و بیشین C می باشد. بنابراین شاید افزایش این ویژگی به دلیل سیستم این گیاه کمبود یا جبران و چندین سیستم می‌باشد. سیستم‌های بیماری دیابتی، که در این گیاه وجود دارد. ۲- بکیشی از عنصری که فراوانی که در آییننده و وجود دارد، سیستم می باشد. ۱- ژن داشته است که کمبود مس در موش خانیایی باعث افزایش قند خون می‌شود. ۱- و همچنین بکیشی از دلائل اصلی این افزایش، کمبود و بیشین C می باشد. بنابراین شاید افزایش این ویژگی به دلیل سیستم این گیاه کمبود یا جبران و چندین سیستم می‌باشد. سیستم‌های بیماری دیابتی، که در این گیاه وجود دارد. ۲- بکیشی از عنصری که فراوانی که در آییننده و وجود دارد، سیستم می باشد. ۱- ژن داشته است که کمبود مس در موش خانیایی باعث افزایش قند خون می‌شود. ۱- و همچنین بکیشی از دلائل اصلی این افزایش، کمبود و بیشین C می باشد. بنابراین شاید افزایش این ویژگی به دلیل سیستم این گیاه کمبود یا جبران و چندین سیستم می‌باشد. سیستم‌های بیماری دیابتی، که در این گیاه وجود دارد. ۲- بکیشی از عنصری که فراوانی که در آییننده و وجود دارد، سیستم می باشد. ۱- ژن داشته است که کمبود M وجود دارد. گاهی بالایی بهای باعث کاهش گل‌گونه پلاسما سه است. زیرا بیان شده که کمبود D و بیشین P در دیابت نوع II و وجود جادوار ۲۲-۲۰ از آن جا که فعالیت یک بسته کلیسی در بیماران دیابتی و موش‌های ساقه ای دیابتی از ریشه گل‌گونه غلظت کلسیم ۱- ژن داشته است که کمبود M وجود دارد. گاهی بالایی بهای باعث کاهش گل‌گونه پلاسما سه است. زیرا بیان شده که کمبود D و بیشین P در دیابت نوع II و وجود جادوار ۲۲-۲۰ از آن جا که فعالیت یک بسته کلیسی در بیماران دیابتی و موش‌های ساقه ای دیابتی از ریشه گل‌گونه غلظت کلسیم ۱- ژن داشته است که کمبود M وجود دارد. گاهی بالایی بهای باعث کاهش گل‌گونه پلاسما سه است. زیرا بیان شده که کمبود D و بیشین P در دیابت نوع II و وجود جادوار ۲۲-۲۰ از آن جا که فعالیت یک بسته کلیسی در بیماران دیابتی و موش‌های ساقه ای دیابتی از ریشه گل‌گونه غلظت کلسیم ۱- ژن داشته است که کمبود M وجود دارد. گاهی بالایی بهای باعث کاهش گل‌گونه پلاسما سه است. زیرا بیان شده که کمبود D و بیشین P در دیابت نوع II و وجود جادوار ۲۲-۲۰ از آن جا که فعالیت یک بسته کلیسی در بیماران دیابتی و موش‌های ساقه ای دیابتی از ریشه گل‌گونه غلظت کلسیم ۱- ژن داشته است که کمبود M وجود دارد. گاهی بالا
کلیدهای گرفته شده از آزمایش‌های جراحی شامل:

1. تحلیل اجاره‌ای: شامل مواردی مانند دریافت داروهای مصرف‌گرای خاصی در زمان مراجعه.
2. سوال‌سازی: شامل سوالات عمومی و خاصی مربوط به بیماری مورد بررسی و بیماری‌های ممکن.
3. بررسی اطلاعات: شامل بررسی اطلاعات تاریخی، شخصی، و علت مراجعه بیمار.
نتیجه‌گیری
بر اساس نتایج این مطالعه، مصرف هرو دوز عصاره آبی گیاه بولاغ اوینی قادر به کاهش گلولک پلاسمای حیوان‌های دیابتی است، اما از آن جایی که بر روی چربی‌های خون بی‌اثر بوده یا دارای تأثیر منفی است؛ مصرف آن در بیماران دیابتی یا کاهش گلولک خون با اختیار بیش‌ترهای می‌شود. این بررسی علمی نشان داد که باور مدرم برای مفید بودن این

References

The Effect of Seeding *Nasturtium officinale* Water Extract on Plasma Lipids and Glucose Level in Diabetic Rats

N. Shahrokhni MSc, M. Khaksari Haddad PhD, M. Shabani MSc, MR. Heidari PhD

Received: 23/12/06 Sent for Revision: 14/03/07 Received Revised Manuscript: 28/11/07 Accepted: 09/01/08

Background and Objective: For treating diabetic patients, different nutrients are being used in some areas of Kerman province, *Nasturtium officinale* (NF) is one of them. In current research, effects of NF on plasma lipid and glucose levels have been assessed in diabetic rats.

Materials and Methods: In this experimental study, 60 male rats were randomly divided into six groups, consisting, one intact non-diabetic group, and remaining 5 groups were injected 55 mg/kg streptozotocin subcutaneously to establish experimental diabetes. Three groups of diabetic animals were treated orally (via gavage) low (25 mg/kg), and high (75 mg/kg) doses of aqueous extract of NF in a volume of 1.5 ml for short period (4 weeks), long period (8-weeks), respectively. One group of diabetic animals was given 2-4 U of NPH insulin intraperitoneally (IP). The last group was given nothing at the end of each experiment. In all groups, blood glucose and lipid levels were measured.

Results: There was significant reduction in plasma glucose in treatment groups compared to diabetic groups. The greatest decrease (96%) was observed in the high dose (long term group for NF extract); which this reduced glucose level was significant compared to the reduced plasma glucose due to insulin injection (p<0.001). There wasn’t observed any change in diabetic animal's total cholesterol, and triglyceride levels of plasma. Both low and high doses of extracts increased LDL- cholesterol levels in diabetic animals. In diabetic animals, plasma HDL- cholesterol levels (33±2.17) decreased by long term dose of extract (17.4±2).

Conclusion: Both doses decreased plasma glucose in diabetic animal, whereas, it had not effect on plasma lipids or had negative effect, therefore this research suggested that NF extract is useful for control of blood glucose.

Key words: *Nasturtium officinale*, Herbal Drugs, Glucose, Diabetes Mellitus, Lipid

Funding: This research was funded by Kerman Physiology Research Center.

Conflict of Interest: None declared.

Ethical approval: The Ethics Committee of Kerman University of Medical Sciences approved the study.

1- Academic Member, Dept. of Physiology, Physiology Research Center, University of Medical Sciences, Kerman, Iran

(Corresponding Author) Tel: (0341) 3220081, Fax: (0341) 3221672, E-mail: nshahrokhisa@yahoo.com

2- Prof., Dept. of Physiology, Physiology Research Center, University of Medical Sciences, Kerman, Iran

3- Academic Member, Neouro Sciences Research Center, University of Medical Sciences, Kerman, Iran

4- Prof., Dept. of Pharmacology, School of Pharmacy, University of Medical Sciences, Kerman, Iran