مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هفتم، شماره اول، خرداد 1387، شماره اول، پاییز 1387

بررسی اثر عصاره آبی-الکلی گیاه کلبوره (Teucrium polium) بر ترشح انسولین
از جزایر لانگرهانس جدایی شده موس صحرایی

دکتر رضا شفیعی نیکی، دکتر سیدمحمدضا پرزاده، افشن کرمی

دریافت مقاله: 27/10/82
نشر پذیرش مقاله: 27/10/82
دریافت اصلاحات از نویسنده: 27/10/82

چکیده
زمینه و هدف: کلبوره در بخش‌های وسیعی از کشور ایران رشد می‌کند و در شرایط دوران ترک موجب کاهش قند خون می‌شود. روش‌های مختلف برای کمک کردن سازوکار این عمل است. در این مطالعه اثر عصاره آبی-الکلی این گیاه بر ترشح انسولین از جزایر لانگرهانس جدایی شده موس صحرایی بررسی گردید.

مواد و روش: در این مطالعه تجربی، نمونه‌های هوایی گیاه (ساقه، برگ و گل) خرد شده و 15 دقیقه بر 120 درجه سانتی‌گراد انگورگ و عصاره خالص در حفظ حلال گردید و مجدداً در DMSO توسط محلول کریس رقیق شد. برای جدا کردن جزایر لانگرهانس در هر آزمایش و موس، هوا و مولکول‌های آن را استر گرداند و در ذیل‌هایی با طور دستی جدا و در بایروبیک 3 میلی‌متری به دقت 0.1 دقیقه پری‌پنیک شده و سپس با محلول گلکز 2% و 10 میلی‌مایلار با یا بدون ازیوبوتنیل متیل‌گزانتین (IBM) یا همراه با عصاره کلبوره با غلظت‌های 0.1/0.1/0.1% به مدت 15 دقیقه رگنیک شدند.

یافته‌ها: 10 مول گلکز موجب ترشح انسولین شد. ازیوبوتنیل متیل گزانتین به عصاره کلبوره با غلظت 1% تغییر در این یافته‌ها کاهش داد.

نتیجه گیری: گیاه کلبوره خاصیت انباوبورتوپیکی دارد. سازوکار اثر اثرات غلظت 1% عصاره مشخص نبود و ممکن است به دلیل سمیت ناشی از غلظت باشد. اثرات کاهش دهنده قند خون کلبوره در شرایط درون تنسی احتمالاً ناشی از تغییر در میزان متابولیسم گلکز در اثر استفاده می‌باشد.

واژه‌های کلیدی: دیابت ملیتوس، موس صحرایی، جزایر لانگرهانس، انسولین، کلبوره، IBMX

مقدمه
عوارض است، شاخص‌ترین و یکی از بیماری‌های افراد دیابت ملیتوس، از نظر اختلالات متابولیکی در جهان امروز بوده و اهمیت آن بیشتر به دلیل شیوع، سریع طولانی و

- 1) (نوبه‌نده مسئول): استادار گروه آموزش فارماکولوژی، مرکز تحقیقات فارماکولوژی گیاهان دارویی، دانشگاه علوم پزشکی مشهد
- 2) استادیار گروه آموزشی پیشینه، دانشگاه علوم پزشکی مشهد
- 3) دانشجوی کارشناسی ارشد، بیوشیمی، دانشگاه آزاد اسلامی مشهد

shafieer@mums.ac.ir

تلفن: 023-88878556 - 88878557 - 88878558
فکس: 023-88878555
پست الکترونیکی: shafieer@mums.ac.ir
اهدا مقاومت به انسلولین علت پاتولوژیکی اولیه است. در ابتدا افزایش ترشح انسلولین مقاومت به انسلولین را جبران می‌کند ولی در طول زمان، به دلایلی که هرگز کامل مشخص نشد است، فعالیت سولفور های مرتحل انسلولین کاهش یافته و در نتیجه تحل مگلزی کاهش می‌یابد که علامت اولیه ظهور بیماری است. در این موقع سولفولیس مرتحل انسلولین به محروک‌های تغییر سولفوئیدئوی اروری یک تفاوت دیده می‌شود. مطالعات مقاومت تری‌ری في این داروها احتمالاً بوده و استفاده از داروها جایگزینی موضوع تحقیقات در درمان دیابت است.[۲۴]

در گذشته استفاده از گیاهان دارویی در درمان بیماران مبتنی بر دیابت نوع دوم، درمان اولیه این بیماری بود و امروزه به عنوان یک جانبه مهم‌ترین می‌باشد. کارایی احتمالی گیاهان دارویی در درمان دیابت و قراراونی آنها در نواحی مختلف ایران و همچنین افتراق معمر در استفاده از این داروها، کلی تنها داراکی بوده است بنابراین تحقیقات دینامیک گیاهان دارویی می‌تواند در جای کف خون نازنی ایجاد یا کاهش ارتصایی از سازوکار مصرف این داروها است. از زمان های قدیم درمان ایران و کشورهای خاورمیانه از گیاه کلیپر (سریم تخودی) با نام علمی "Tecurium Polium (Polium)" می‌باشد. گیاهی است که در مرکز تحقیقات علمی گیاهی دانشگاه فردوسی مشهد مورد بررسی قرار گرفته است. در ابتدا حدود ۵۰ گرم از اندازه‌های ویژه گیاه (ساقه، برگ و گل) را به سویا آسیب ۵۰۰ میلی‌متر کلیه ۵۰ لوله ارگونومیک در دمای ۴۰ درجه سانتی‌گراد قرار دادید. سپس مخلوط حاصل را به وسیله یک صافی نمونه و سپس محل ذفه محل در خانم، گرده می‌گیرد.

در هر ازمایش برای تهیه محلول ۵۰۰ میلی‌گرم عصاره کلیپر را در ۱ میلی‌لیتر محلول DMSO محلول حاصل به ۱۰ میلی‌لیتر بافر کربس (حاوی، میلی‌لیتر، میکرو‌سولفات ۹۰، سیدیم ۰/۰۰۱ میکروولیت را در ۱ میلی‌لیتر حلال خنک کرده) دامپس ۱۰۰ میکروولیت را در محلول حاصل به ۱۰ میلی‌لیتر بافر کربس (حاوی، میلی‌لیتر، میکرو‌سولفات ۹۰، سیدیم ۰/۰۰۱ میکروولیت) نگهداری می‌کرد.

مجله دانشگاه علوم پزشکی رفسنجان
دوره ۷، شماره ۱، سال ۱۳۸۷
میکروبلیت‌ز از ویال‌های عصاره حمل شده به DMSO در یک میلی‌لیتر از محلول‌های ۱ میلی‌لیتر مولکول گلوکز
اضافه گردید. محلول‌ها قبل از آزمایش توسط محلول ۹۵ تری‌تئوده مخلوط
گاز اکسیژن و ۵ تری‌تئوده گاز کربن دی اکسید و در خوبی گاز داده شدند.

۲.۵ میلی‌لیتر ۴۲ سدیم کلراید ۳۷، ۱۸۲ کلسیم
کلراید/۲.۵ نتایم دی‌هیدروژن سافت ۳/۲ همراه با ۳/۲
۱۰ میلی‌لیتر محلول گلوکز اضافه می‌گردید.

جراحان آماده‌سازی: جراحان مورد استفاده در این

سپس محلول اکوپنیشن تخلیه شد و به هر ویال یک
میلی‌لیتر با ۲۰ فقره اکوپنیشن حاوی ۳ میلی‌لیتر IBMX
با ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقره محلول گلوکز به بهانه کلراید با ۳ میلی‌لیترIBMX
و ۲۰ فقرе...
درصد غلظت عصاره کلیه‌ها

نمودار 1- عصاره کلیه‌ها بر ترشح انسولین در متوسط گلولکر هر سه‌ماه بر اساس تحقیق‌های تداومی. در میزان ترشح انسولین با مواد گلولکر به‌طور متوسط 2.5 میلی‌مولار واحد. در این آزمایش انسولین با زمان و ترکیب مواد گلولکر به‌طور متوسط 3 میلی‌مولار بررسی گردید. در این شرایط ترشح انسولین از گلولکر در طی 30 دقیقه، به معادله مول گلولکر 25/5 میلی‌مولار و در طی 15 دقیقه به معادله مول گلولکر 15/5 میلی‌مولار (N = 150). این بحث در حیات انسولین کمکی است. بحث انسولین برای کاهش نرخ اسیدی شده است. کلیه‌ها به‌طور معمول از گلولکر دارویی است. سازوکار اثر گلولکر در کاهش غلظت نیست، با توجه به سازوکارهای ترشح انسولین، اثر گلولکر در مدل جزیی لانگرهام جدای شده مورد بررسی قرار گرفته است.

این نتایج اینکه هنگام بارزی جدایی لانگرهام به‌طور معمول نمایش داده می‌کنند. استخراج می‌شوند به‌طور غیرتی گلولکر بایش می‌دهد که جزای لانگرهامی که به روش دکتر شده در این مقاله است که ازاپ از گلولکر پاش می‌دهد و
همان طور که در نتایج بیان شد، با افزایش غلظت گلوکز خون از 3 میلی‌مولر به 10 میلی‌مولر سطح انسولین بیش از
1/15 برای افزایش یافته است. وجود بیان جزیره به گلوکز در
ارزیابی عمل ترشح آنها به پاسخ‌های فارماکولوژیکی ضروری
است. این رویت را می‌توان برای کشف سایر عواملی که به
تحویل می‌توانند بر ترشح انسولین تأثیر بگذارند (اعم از گیاهان
دارویی یا داروهای سنتز شده شیمیایی) مورد استفاده قرار
داد.

یکی از سازوکارهای مهم در تقویت ترشح انسولین قله شده
توسط گلوکز، افزایش غلظت انسولین در سلول‌های مترشحه
سانسکاری است. جهت ایجاد این اثر می‌توان داروهای محبک
آیدینیل سیکلر و یا داروهای مهارکننده فسفودیل‌استرهازهای
نوکلوترونیک حلقه (PDE) را استفاده نمود. در این تحقیق
اتر روش جایزی استفاده از IBMX یا هیبریدی که به عناصر
IMPAK احتمالاً می‌تواند غیر مناسبی از این جایزه باشد.

اتر سبب مورد بررسی قرار گرفته است. نتایج حاصل
که در شکل 2 نشان داده شده‌اند، یک‌پاسخ جزیره به عوامل
فارماکولوژیکی می‌باشد. با توجه به این نتایج می‌توان
توزیع جزیره و فارماکولپریکس بایستی بررسی نمود.

فیزیولوژی و فارماکولپریکس بایستی بررسی نمود.

آنها را به عنوان یکی از مدل مناسب در ارزیابی اثر داروهای
گیاهی بر ترشح انسولین مورد استفاده قرار داد.

اثر‌گذاری گلوکز در دو مکانیسم متفاوت ترشح انسولین
یعنی ترشح انسولین باز (ترشح انسولین در حضور گلوکز)
و میلی‌مولار (ترشح انسولین قله شده توسط گلوکز) (ترشح
انسولین در حضور گلوکز 10 میلی‌مولار) مورد بررسی قرار
گرفته است.

همان‌طور که از نتایج آنها نتیجه می‌گیریم، مصرف گلوکز در 1/15 از شرایط مذکور تغییری در
ترشح انسولین نکرد. این نتایج می‌توانند گفته کنم
که گلوکز یک گیاه انسولین‌افزاری سیستم‌های وابستگی
کاهش‌پذیر‌خون که در گزارش‌گزارش دیگر نشان داده شد است
[9،10] احتمالاً از طریق سازوکارهای دیگری مثل افزایش
حساسیت اندیس‌ها به انسولین و یا ایجاد اثرات مهار در
متولای انسولینگلکوز که در کبد اعمال می‌شود.

۵۷

پژوهش‌های مرتبط با انسولین و یا ایجاد اثرات مهار در
نتیجه‌گیری

1- هیچ گونه در ترکیبات موجود در گیاه کلیپوره محیط ترشح انسولین نبوده و قادر به تقویت ترشح انسولین افزایش ۰.۹۸ توسط گلوكزر نیستند.

2- کاهش نشان شده در تحقیقات درون‌نی (in-vivo) مشاهده شده است احتمالاً ناشی از ترمیم سلول‌های آسیب دیده پانیراس و یا افزایش فعالیت سلول‌های کبدی بوده است.

3- کلیپوره در مقایسه یارا، دارای اثرات محدودی است. با توجه به اثرات مهاری غلظت ۱/۲ و ترشح انسولین از

References

جلوه دانشگاه علوم پزشکی رفسنجان

دوره ۷، شماره ۱، سال ۱۳۸۷

Evaluation of the Effect of Aqueous - Alcoholic Extract of *Teucrium Polium* on Insulin Secretion From Isolated Rat Pancreatic Islets

R. Shafiee-Nick PhD¹, S.M.R Parizadeh PhD², A. Karimi MSc Student³

Received: 18/09/06 Sent for Revision: 16/3/07 Received Revised Manuscript: 14/10/07 Accepted: 24/10/07

Background and Objective: *Teucrium Polium* (Labiatae) grows widespread in Iran and reduces blood sugar *in-vivo*. To examine the mechanism of this effect, in this study we explored the effects of aqueous-alcoholic extract of this plant on insulin secretion of isolated rat pancreatic islets.

Materials and Methods: In this experimental study, the upper parts of the plant (stem, flowers and leaves) have been ground and extracted by incubating in 500ml of 50% alcohol at 40 °C for 72 hours. Then the solvent was evaporated in vacuum and reconstituted in DMSO which diluted with Kreb's solution, rats were anesthetized with thiopental, for isolation of Islets, in each experiment. The pancreases were isolated and digested with collagenase and isolated islets were collected manually under a stereomicroscope. Isolated islets were pre-incubated in Kreb’s buffer with 3mM for 30min and then incubated with glucose 3mM or 10mM) with or without Isobutyl-Methylxanthine (IBMX) or the extract (0.1% and 1%) for one hour.

Results: Our results showed that 10mM glucose stimulated insulin secretion. IBMX augmented glucose-induced insulin release (GIIR) in a dose-dependent manner. However, the extract, in concentration of 0.1%, did not change GIIR and in a concentration of 1% significantly decreased GIIR.

Conclusion: *Teucrium Polium* extract has not insulinitropic property. The mechanism of inhibitory effect of the extract in the concentration of 1% is not clear and is may be due to the toxicity which the extract produces in high concentrations. We may conclude that the *in-vivo* hypoglycemic effect of is probably the result of changing the rate of glucose metabolism or increasing the sensitivity of peripheral tissue to insulin.

Key words: Diabetes Mellitus, Rats, Islets of Langerhans, Insulin, Teucrium, IBMX

Funding: This research was funded by Mashhad University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics comitte of Mashhad University of Medical Sciences approved the study.

1- Assistant Prof., Dept. of Pharmacology, Pharmacological Research Center of Medicinal Plants, University of Medical Sciences, Mashhad, Iran
(Corresponding Author) Tel: (0511) 8828566, Fax: (511) 8828567, E-mail: shafieer@mums.ac.ir
2- Assistant Prof., Dept. of Biochemistry, University of Medical Sciences, Mshhad, Iran
3- MSc Student of Biochemistry, Islamic Azad University, Mashhad, Iran