مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هفتم، شماره اول، بهار 1387.

بررسی اثر امواج اولتراسوند منطقه‌ی با فرکانس پایین بر تشکیل کال استخوانی تبیا در خرگوش (ارزیابی رادیولوژیک و بیومکانیک)

دکتر سید همايون صدرایی، مرضیه جلالی منفرد، غلامرضا کاما، محمود مفید، دکتر بیدا... رضایی، دکتر گیتی ترکمان، دکتر علی اکبر کریمی‌زاری، دکتر حسین دشتی‌نوژد، دکتر حسنعلی محبی، دکتر مجید
مصداق فرآیند

چکیده
زمینه و هدف: امواج اولتراسوند با فرکانس پایین در ارائه تبیا در خرگوش هم به طور معمول به شکستگی عضلانی و سایر اثرات نارسایی مربوط است. زمانی که امواج اولتراسوند با فرکانس پایین به سیستم تبیای خرگوش تاکید می‌کنند، نتایج متفاوتی به وجود می‌آورند.

مواد و روش‌ها: این مطالعه تجربی تعداد 200 روش خرفی در خرگوش به روش‌های خاصی دستگاه‌های مختلفی از جمله دستگاه‌های بیومکانیک استفاده شده است. در این مطالعه، تعداد 100 روش استفاده شده است که در نهایت 80 روش به کار رفته است.

نتایج: نتایج نشان داد که امواج اولتراسوند با فرکانس پایین می‌توانند به عنوان یک روش جدید در تشخیص کال استخوانی تبیا در خرگوش به‌روزرسانی یا اعمال شوند.

واژه‌های کلیدی: اولتراسوند، استخوان، تبیا، خرگوش

1- (نویسنده مسئول) استادیار گروه آموزش علوم تشريح، دانشگاه علوم پزشکی بهيه (عج)، تهران
h_sadraie@yahoo.com
تلفن: 021-22478482
2- مریم گروه آموزش علوم تشريح، دانشگاه علوم پزشکی بهيه (عج)، تهران
3- مریم گروه آموزش علوم تشريح، دانشگاه علوم پزشکی بهيه (عج)، تهران
4- استادیار گروه آموزش علوم پزشکی ارتودوکس، دانشگاه علوم پزشکی بهيه (عج)، تهران
5- دانشگاهی گروه آموزش علوم پزشکی بهيه (عج)، تهران
6- استادیار گروه آموزش علوم تشريح، دانشگاه علوم پزشکی بهيه (عج)، تهران
7- استادیار گروه آموزش علوم پزشکی بهيه (عج)، تهران
8- استادیار گروه آموزش علوم پزشکی بهيه (عج)، تهران
9- استادیار گروه آموزش علوم پزشکی بهيه (عج)، تهران
مقدمه
طبق آمار حدوداً 54 میلیون شکستگی تیت شده در ایالات متحده آمریکا 5 تا 10% موارد، میثلا به دیش جوش (non union) یا جوش تاخیری (delayed union) شده‌اند [1]. نتایج تحقیقات تجربی و بالینی نشان داده که استفاده از امواج اولتراسوند با حداقل پایین سپر تریگر رشد استخوان شکستگی گردیده است [2-5]. استفاده از اولتراسوند در فیوزن مهره‌ای و در شکستگی‌های مبتلا به عارضه جوش تأخیری سبب ارائه سازی شده است [6-7].

Joseph
مها و همکاران اثر امواج اولتراسوند را با روی موش‌های مبتلا به دیاب اول ایجر بردند. این آمار امواج اولتراسوند را با شدت 20 میلیوات بر سانتی‌متر و فرکانس 15 میلی‌هرتز را و گروه کنترل مشابه در نظر گرفتند. هنگامی که افزایش نرخ نامناسبی در بین نشان داد که در گروه اولتراسوند مراقبت‌های بی‌درنگ بود [14].

Gregory
مها و همکاران نیز اثرات امواج اولتراسوند را روی موش‌های مبتلا به دیاب اول ایجر بردند. این آمار امواج اولتراسوند را با شدت 30 میلی‌وات بر سانتی‌متر و فرکانس 15 میلی‌هرتز را و گروه کنترل مشابه در نظر گرفتند. هنگامی که افزایش نرخ نامناسبی در بین نشان داد که در گروه اولتراسوند مراقبت‌های بی‌درنگ بود [15].

John
مها و همکاران یک شکستگی در تیپ استخوان نیبیا در 26 خرگوش ایجر کردن گردید، و با استفاده از ایک تای نکته خارجی آن را تابی نمودند. هنگامی که از طریق آنتی‌بیوتیک بالینی نشان داد که دارای روز و در شکستگی اولترا-سنند تابی نیست در محدوده‌های تحلیلی اولترا-سنند را با فرکانس 15 مگاهرتز و شدت 20 میلی‌وات بر سانتی‌متر و فرکانس 20 دیفیچ و در موش‌های مبتلا به دیاب اول ایجر بردند [10].

Kazemi
شاپه ع داستاخیل ناقص استخوان نیبیا خرگوش را بررسی کرده. تحقیقات این ارزش نشان داد که در روز و بهتر استخوان در گروه جمی نسبت به گروه کنترل بیشتر بوده و از روز پانزدهم تا بیست و هفتم، در مراحل تشکیل کول و تجدید ساختار، گروه کنترل از سرعت الگوی بیشتر برخورد بودند [9].

Jui-Sheng
با وجود نتایج نشان دادند تأثیر اولتراسوند در روبند استخوان‌های بزرگ در تحقیقات دیده شده تعدادی از تحقیقات نیست. مثلاً یافته‌ها از امواج اولتراسوند بر ترمیم شکستگی در بین 1387 دوره 7، شماره 1، ماه 1387
از آن‌ها به طور چشان‌گاهی در قفس‌های مخصصی خرگوش
نگه‌داری شدند. خراکت دام خرگوش به صورت هبه به همرе
آب به صورت ازداد در دسترس آن‌ها قرار گرفت. دمای
حیوان‌های در حدود ۲۷.۵ درجه سانتی‌گراد و درمانی آن
به طور متوالی ۱۲ ساعت نور و ۱۲ ساعت خاموشی تنظیم
گردید.

برای انجام جراحی، خرگوش‌ها به ترتیب عضلانی زایل‌ین
هیدروفکراید (Zylasine hydrochloride) به مقدار ۱۰ میلی گرم بر
کیلوگرم و کاتامین هیدروفکراید به مقدار ۴۰ میلی‌گرم بر
کیلوگرم وزن بیهوش شدند. سپس اتئام
هبای را در آجیا به تالی سازی شیو (Shave) گردید و
با تنگین ضدعفونی شد. با استفاده از درل، دو شن به قطع
۱/۵ میلی‌متر در ناحیه دست‌النگاه نیبی به طور عرضی و
دو شن دیگر به قطع ۲ میلی‌متر به همین ترتیب در ناحیه
پرورگرمال استخوان نیبی قرار گرفت. در مهیه
مواری محور عضلانی بر روی استخوان قرار داده
شد و سر شنوی و سر خون‌نشینی کلامل (clamp) روی میله‌ها ثابت
شد (شکل ۱). بعد از حذف بدن نارنجی در داخل استخوان با
استفاده از نیبی پبلوست بین دو شن وسطی حدود
سانتی‌متر به صورت طولی با شده فاسیای عمکی و پروسید
بریده شد و سپس بوسیله اکانتور، عقلن و پروسید کنار
زده شدند. با این بزرگی شکسته بی‌فهوه به تعداد دو
اره بریته قیام شد و در ناحیه میانی نه
یاچ هرگونه. در حین پخش استخوان نیبی، سرم
فیزیولوژی به صورت آهسته روی محل پر شیده می‌شد تا
ماخذ ایجاد گرد و شده. در این روش استخوانی کامل بوده و
استخوان به طور عرضی بریده شد. سپس پروسید بر روی
استخوان کشیده شد، فاسیای عمکی و پوسید به تاخ
۴ صفر
سیلک بی‌فهوه زده شد.

جفت یک‌تیغی از عضلات سافوزیونی با دور ۲۰ میلی‌گرم
بر کیلوگرم به مدت ۳۰ ثانیه به صورت داخل عضلانی تزریق شد
خرگوش‌ها به طور متوالی در دو گرو تجربی دو گرو تجربی
(۱-۳) بالا و (۲-۴) پایین و (۱-۲) بالا و (۳-۴) پایین
نیبی قرار گرفتند. به این ترتیب

[۱۷-۲۴] انتخاب اثرات اولتراضوند در ترمیم شکستگی تنبیا که استفاده از
اموات اولتراضوند در ترمیم شکستگی تنبیا که استفاده از
Intramedullary nail (IM) یکی از اموات اولتراضوند در ترمیم
نمک‌گذاری داخل مؤن استخوان
فیکس نشده شیب تأثیر بوده است [۱۱].

و همکاران نیز اثرات اموات اولتراضوند را روی
Handolin موش‌های صحرایی که ناحیه دست‌النگاه قرار آن‌ها
استخوانی شد و توسط اکستنال فیکسکتور ثابت شده بود.
مور برسی قرار دادند. در گروه‌های ۶ و ۱۲ هفته‌ی نتایج
بررسی‌های رادیوگرافیک و هیستوپاتوفیزی هیچ تفاوت
معنی‌دار میان دو اموات اولتراضوند درمانی و کنترل نشان نداشتند.

[۱۷-۲۴] انتخاب اثرات اولتراضوند را با استفاده از دو و مدت زمان
استفاده می‌داند [۱۷۱]. نتایج برسی تعدادی از محققین نیز
نشان داده است که اولتراضوند درمانی سرعت خوردگی
تاندون به استخوان [۲۳] و خوردگی استخوان مانده‌ی
خرگوش‌ها را افزایش داده [۲۳] و بر روید ثابت و تمایز
کندوربوت‌ها تأثیر مثبت گزارده است [۲۴].

اثرات اولتراضوند بر ترمیم شکستگی را
Tsunoda Handolin بیان کرد است [۱۵]. ولی نتایج معمولاً با باهامه‌ای
و همکاران که عدم نتایج مثبت اموات اولتراضوند در ترمیم
شکستگی‌های فکری خارجی با را نشان داده، می‌باشد
[۲۸-۳۰]. با توجه به نتایج متفاوتی که در تحقیقات فوق آمده
هدف از این تحقیق برسی تأثیر شدت ۴۵ و ۱۰۰
میلی‌وایت بر سانتی‌مترد متوالی اولتراضوند بر روید
شرکت کری در استخوانی نیبیا در خروش کردن

مواد و روش‌ها

در این مطالعه تجربی، تعداد ۶۲ سوز خروش نسیم
با وزن حدود ۴۷۰ تا ۳ کیلوگرم و حدود ۴
ماه سن از مؤسسه رازی حصار کرج خریداری شد و هر یک

حمله دانشگاه علوم پزشکی رفسنجان
دوره ۶، شماره ۱، سال ۱۳۸۷

۴۱
جهت بررسی کنترل و مقایسه انجام شد. در قالب‌های مختلف این نتایج می‌تواند از قضاوت‌های داخلی و بیرون‌البنی تأثیر گذاری شود.

نتایج
بررسی کلیشه‌های رادیوگرافی (X-ray) استخوان‌ها و مطالعه کمال استخوانی نشان داد که بین گروه‌های کنترل و اولتراسون در مردان ناپدید شد و نفوذ اشعه ایکس وجود نداشت. کالستری بین نمونه‌های میزان کال در گروه کنترل 45/50±12/5 و در گروه تجربی 45/12±12/5 و در گروه تجربی 3 (میانگین 500 میلی‌وات بر سانتی‌متری) 100 میلی‌وات بر سانتی‌متری بود که اختلاف معنی‌داری از دید این گروه‌ها نشان نداده است.

که در هر یک از گروه‌های تجربی 6 گروه و در گروه کنترل
8 گروه قرار گرفتند.

به منظور اولتراسون درمان، سه روز بعد از جراحی،
حیوانات گروه تجربی به وسیله محفظه نگهدارنده بی‌حوزه
شد، روی بوسیله ناحیه داخلی ساق در محل جراحی از
ژل مخصوص استفاده می‌شود و اولتراسون درمان به وسیله
مدل Sonopuls (کرکت) در خصوصیات:
1. میلی‌هارتس و شدت 50 و 100 میلی‌وات بر
سانتی‌متری و مدت زمان 15 دقیقه، به صورت روزانه انجام
شد. گروه‌ها در دو گروه شاهد زن روزانه به مدت 15 دقیقه در
محفظه نگهدارنده و در وضعیت گروه تجربی در زیر دستگاه
خاموش قرار می‌گرفتند.

6 گروه نگهدارنده در دو نمای
قدامی – خلفی و طرفی روز کلیشه‌های ماقبلگرفته که دارای
کیفیت بهتری نسبت به کلیشه‌های معمولی بودند انجام شد.
تصاویر رادیوگرافی به صورت کد مخفی توسط یک متخصص
ارتباطی و یک متخصص اتوماتیک به طور جداگانه از نظر
میزان کال استخوانی مورد ارزیابی قرار گرفتند. دانشگاه‌های هر
یک از تصاویر رادیوگرافی استخوان‌ها در هر یک از نماهای
فرونتال و سایتی محبوب گردید.

ارزیابی و درجه‌بندی کال استخوانی با استفاده از روش
اصلاح شده Madsen [29] صورت گرفت (جدول
1).

جدول 1- درجه‌بندی کال استخوانی در نمای
ارضایی و همکاران Madsen

<table>
<thead>
<tr>
<th>درجه کال استخوانی</th>
<th>درجه کال استخوانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>صفر</td>
</tr>
<tr>
<td>یک</td>
<td>یک</td>
</tr>
<tr>
<td>دو</td>
<td>دو</td>
</tr>
<tr>
<td>سه</td>
<td>سه</td>
</tr>
<tr>
<td>چهار</td>
<td>چهار</td>
</tr>
<tr>
<td>پنج</td>
<td>پنج</td>
</tr>
</tbody>
</table>

شکل 1- رادیوگرافی استخوان‌ها در گروه‌های مختلف. (A : گروه
کنترل، B : گروه تجربی، C : گروه تجربی، 150 میلی‌وات بر سانتی‌متری)

(1225 +0430 on Monday September 9th 2019)
بخت

مدل حیوانی استخوان نیبیای خرگوش به سبب شیب‌گیری بیشتری نسبت به سایر مدل‌های مناسبی برای تحقیق بر روی استخوان نیبیای خرگوش [۱۰۰] با توجه به این که شدت‌های بالای امواج اولتراسوند سبب رسادندی باید استخوانی و منجر به تأخیر در جوشخردن استخوان می‌شود [۱۴] معمولاً جهت ترمیم استخوان شکسته از شدتهای پایین استفاده گردده است [۶].

نتایج تحقیق حاضر نشان داد که استفاده از امواج اولتراسوند با مشخصات: ۱ میلی‌هرتز و شدت ۵۰ و ۱۰۰ میلیوات بر سانتی‌متر ثانیه و مدید زمان ۱۵ دقیقه، در محل شکست‌گذار استخوان نیبیای خرگوش از نظر رادیوگرافی و بیومکانیک متأثر به سزاواری در ترمیم استخوان نشان می‌دهد و تفاوت معنی‌داری میان گروه‌های تجربی و کنترل مشاهده نگردید.

برخی تحقیقات گذشته نشان داده بودند که اولتراسوند بر روی روند ترمیم شکستگی و در پایان استخوان‌های داخل غضروفی تأکیدی مشت داشته است [۲۴-۲۵،۲۶،۲۷،۲۸].

بایتهایی که با نتایج این محققین هم‌سوب نبوده و اثر مثبت از اولتراسوند در ترمیم شکستگی استخوان نیبیای خرگوش از نقطه نظر رادیوگرافی و بیومکانیک مشاهده نگردید.

از سوی دیگر نتایج ما با یافته‌های برخی دیگر از محققین که اثر مثبت برای اولتراسوند در ترمیم استخوان ذکر کرده‌اند و [۱۹،۱۶،۱۵،۱۲-۱۱] برای مثال همکاران نشان داده که امواج اولتراسوند بر رشد طول و دانسه‌استخوان فمور و تبدیل موس می‌باشد که اثر نداشت و تفاوتی میان طول و دانسه‌استخوان‌ها در گروه کنترل و اولتراسوند وجود نداشت [۱۴].

با توجه به تحقیق حاضر، استفاده از امواج اولتراسوند با شدت ۵۰ میلی‌وات بر سانتی‌متر ثانیه روند استخوان‌سازی را قدری به تأخیر انداخته است در حالی که کاربرد امواج اولتراسوند با شدت ۱۰۰

مجله دانشگاه علوم پزشکی رشت‌جان
دوره ۷، شماره ۱، سال ۱۳۸۷
مربوط می‌باشد، فعالیت‌های غیرگرمايی است که در برخی از محدوده‌های

و همکاران نیز نشان دادند که تشکیل استخوان

جدید در محل استخوان و نست تورش‌شان در گروه

اوئرتراوسون درمان کمی بی‌شک برای گروه شم (Sham)

برخی محققین اثر اوئرتراوسون در ترمیم شکستگی را تایید

و یا به تأثیر اینونا کرده‌اند. حتی در مواردی که اثر مثبت برای

اوئرتراوسون قابل حدود سازوگیری را از جمله افزایش

بروتاستاتیک‌ها، تسریع جراین آنزیمی، افزایش سنتز

پروتئین‌ها و کلرکز نوع به راه توجهی این اثرات مطرح

کرده‌اند ولی در عدد نتان جراین بین اینوسین که مکانیسم

دقیق و کامل سهیل اوئرتراوسون بر سلول‌ها و بافت‌های

زند هنوز به‌خوبی شناخته نشده است [22-26].

نتایج رادیوگرافی در تحقيق حاضر با یافته‌های امامي و

همکاران همی‌باشد زیرا ایشان نیز در بررسی

رادیوگرافی‌های بیمارانی که شکستگی آنها با روش

عمل شده و با اوئرتراوسون مورد دانم

قرار گرفته بودند در مقایسه با گروه کنترل تفاوت معنی‌داری

مشاهده نکردند [21-22]. مشاهده چنین نتایج را نیز در

گزارشات و همکارانش در بررسی اثر اوئرتراوسون بر

ترمیم شکستگی قوزک با می‌پیمایی و ایشان نیز اثربخشی

اوئرتراوسون را بر ترمیم شکستگی استخوان در نمونه‌های خود

مورد تردید قرار داده است [28].

از این امواج با شدت‌های بسیار منفی‌بوده و تولید می‌باشد [30-32]

سانتی‌مترومیتر که در محدوده (In vivo)

کشت استفاده شد و نتایج منفی که گزارش شده است. (In vitro)

برخی از محققین شدت ۵۰۰ با 東 می‌باشد

موبینه برای رشد استخوان و ترمیم شکستگی مفید گزارش شده

و شدت‌های کمتر غیرمی‌باشد. (25) و اکثر

شدت‌های بین ۰ تا ۰ می‌باشد بر سانتی‌مترومیتر را مثبت

گزارش نموده علی‌رغم آن را در این ساختار داشت باشد. به هر حال سازوکار

پایه‌ای که از طریق آن اولتراوسون رشد استخوان را در

مجله دانشگاه علوم پزشکی رفسنجان

دوره ۷ شماره ۱ سال ۱۳۸۷
نتیجه‌گیری
ناتیج حاصل از تحقیق حاضر نشان داد که استفاده از امواج پلاریزاسیون با مشخصات ۱ میلی‌هرتز و شدت ۵۰ و ۱۰۰ میلی‌وات بر سانتی‌مترمربع و مدت زمان ۱۵ دقیقه، در محل شکستگی چه از نظر رادیوگرافی و چه از نظر بیومکانیک تأثیر به سزایی در ترمیم شکستگی استخوان تیپ‌بای خرگوش می‌گذارد.

References

Study of the Effects of Intermittent Low-Intensity Pulsed Ultrasound on Callus Formation of Tibia in Rabbit (A Radiological and Biomechanical Evaluation)

S.H. Sadraie PhD, M. Jalali Monfared MSc, Gh. Kaka MSc, M. Mofid MSc, Y. Rezaei MD, G. Torkaman PhD, AA. Karimi Zarchi PhD, H. Dashtnavard PhD, A.M. Mohebbi MD, M. Masoudifar PhD

Received: 23/05/07 Sent for Revision: 21/08/07 Received Revised Manuscript: 22/10/07 Accepted: 25/10/07

Background and Objective: Application of low intensity ultrasound has been used for treatment of many diseases in medicine and has suggested for accelerating wound healing process, modifying scar tissue and relief of pain. The aim of this study was radiological and biomechanical evaluation of low-intensity pulsed ultrasound on callus formation of tibia in rabbit.

Materials and Methods: In this experimental study 20 male white Dutch rabbits (weighting 2.5-3 kg) aged about 6 months were used. Under general anesthesia and sterile condition a standardized mid-tibial osteotomy was performed in the right tibia and bilateral external fixator was applied to the lateral aspect. The rabbits were randomly divided into control and ultrasound groups. After three days of surgery the rabbits of ultrasound group received ultrasound with 1MHz & pulsed 1:1 & 50 and 100 mw/cm² for 15 min/day and the control groups did not received any treatment. The rabbits were killed at week 7 post surgery by inhalation of chloroform. Radiographs were taken following killing the animals immediately. Biomechanical test of rabbits tibiae were used and the samples were taken from the callus of fracture.

Results: Radiological scoring of tibia according to density of mineralized callus in the control group was 3.5±0.35 and in the ultrasound group (50mw/cm²) was 2.55±0.25 and in the ultrasound group (100 mw/cm²) was 3.25±0.38. Thus there was it has no differences between ultrasound and control group in radiographs. Force maximum in the biomechanical test of the tibia in the control group was 65.75±6.16 and in the ultrasound group (50 mw/cm²) was 49.42±5.27 and in the ultrasound group (100 mw/cm²) was 79.12±9.63, the differences were not significant.

Conclusion: These finding suggest that programmed ultrasound therapy has no effect on fracture repair and callus formation of rabbits tibiae.

Key words: Ultrasound, Bone Repair, Tibia Fracture, Rabbit

Funding: This research was funded by Trauma Research Center of Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Research Center of Baghiyatullah (a.s.) University of Medical Sciences approved the study.

1- Assistant Prof., Dept. of Anatomy, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
 (Corresponding Author) Tel: (021) 22289941, Fax: (021) 22281561, E-mail: h_sadraie@yahoo.com
2- Academic Member, Dept. of Anatomy, Artesh University of Medical Sciences, Tehran, Iran
3- Academic Member, Dept. of Anatomy, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
4- Assistant Prof., Dept. of Orthopaedic Surgery, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
5- Associate Prof., Dept. of Physiotherapy, Tarbiat Modares University, Tehran, Iran
6- Associate Prof., Dept. of Epidemiology, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
7- Assistant Prof., Dept. of Anatomy, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
8- Associate Prof., Dept. of General Surgery, Baghiyatollah (a.s.) University of Medical Sciences, Tehran, Iran
9- Assistant Prof., Dept. of Radiology, School of Veterinary, Tehran University, Tehran, Iran