چکیده
زمینه و هدف: ارزیابی کیفیت پروتئین مواد غذایی به دلایل بیولوژیک و اقتصادی از اهمیت ویژهای بخوردار است. در بین روش‌های بیولوژیک، قابلیت حفظ پروتئین (TPD) True Protein Digestibility، نسبت خالص پروتئین (NPR) Net Protein Ratio، نسبت کارآیی پروتئین (AD) Apparent Digestibility و نسبت کارآیی غذای مورد استفاده (PER) Protein Efficiency Ratio مناسب برای تعیین کیفیت پروتئین‌ها پیشنهاد شده است. این مطالعه با هدف ارزیابی کیفیت پروتئین یک نمونه غذای خانگی (مانش و پرنج) و مقایسه آن با یک نمونه غذای صنعتی کودک (سرلک بر پایه گندم) و استاندارد کازنین در موش‌های صحرایی انجام گرفت.

مواد و روش‌ها: برای اجرای آزمون، مقدار برانگیز تقریبی (Tukey) از گروه‌های مورد استفاده از طریق آنانز واریانس (ANOVA) همراه با آزمون توکی (Tukey) و شاخص TPD، NPR، AD، PER و ANOVA تعیین گردید. گروه‌ها به موارد برآورد گرفته شدند. در نتیجه، کیفیت پروتئین غذای خانگی نسبت به گروه دیگر کازنین و استاندارد کازنین است.
مواد و روش

تحقیق حاضر به روش تجربی بر روی 60 موش صحرایی نر 4 وزنی و بی ویت‌من در محدوده سن 5 تا 15 روزه که از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat) از نژاد ویت‌من در محدوده سن 5 تا 15 روزه که (rat)
جدول 1 - مواد اولیه برای تهیه رژیم‌های غذایی تجربی بر حسب گرم در صد کرم

<table>
<thead>
<tr>
<th>گروه غذایی</th>
<th>برند+ماس</th>
<th>کازتن+میتونین</th>
<th>پایه (فاعلی پروتئین)</th>
<th>سرلاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/0</td>
<td>0</td>
<td>0</td>
<td>5/4</td>
<td>1/5</td>
</tr>
<tr>
<td>10/0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4/4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1- ترکیبات ماس و برنج را پس از لحظه حرارتی می‌توان آشامیدنی کرد.
2- تهیه رژیم‌های غذایی بر اساس میزان فیبر (سلولز) موجود در مواد غذایی که غیر از برنج ۰% در رژیم‌های تجربی مستند ناشی از مخلوط غربالی نمی‌باشد.
قسمت های وزنی این آزمون هایی هستند که برای این مطالعه ساخته شده بود. هدف واقعی گردیده ناحیه با فاکتور تغییرات در ظروف پلاستیکی در دمای اتفاق گئوداری گردیده. در پایین، مقدار پروتین در فاصله توسط EAR محاسبه می‌شود و NPR در مورد محاسبه زیر استاندارد، گزارش شد.

\[\text{EAR} = \frac{\text{EAR}_{\text{stand}}}{\text{EAR}_{\text{stand}}} \times 100 \]

\[\text{NPR} = \frac{\text{EAR}_{\text{actual}}}{\text{EAR}_{\text{standard}}} \]

میزان خاکی خاکی و وزن پروتئین به کمک راهبرد زر استاندارد. گزارش شد.

\[\text{PER} = \frac{\text{EAR}_{\text{actual}}}{\text{EAR}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{EAR}_{\text{actual}}}{\text{EAR}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{EAR}_{\text{actual}}}{\text{EAR}_{\text{actual}}} \times 100 \]

\[\text{NFI} = \frac{\text{NFI}}{\text{NFI}_{\text{stand}}} \]

\[\text{TPD} = \frac{\text{TPD}_{\text{actual}}}{\text{TPD}_{\text{actual}}} \times 100 \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

در تکمیل موارد 0.05<پ>م‌هندار ثلثی شده است.

\[\text{TPD} = \frac{\text{TPD}_{\text{actual}}}{\text{TPD}_{\text{actual}}} \times 100 \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]

\[\text{AD} = \frac{\text{AD}_{\text{actual}}}{\text{AD}_{\text{actual}}} \times 100 \]

\[\text{PER} = \frac{\text{PER}_{\text{actual}}}{\text{PER}_{\text{actual}}} \times 100 \]

\[\text{FER} = \frac{\text{FER}_{\text{actual}}}{\text{FER}_{\text{actual}}} \]
جدول 3- میانگین وزن و پروتئین در ریافتن، مقادیر مقدوUV و پروتئین دفعی حیوانات در گروه‌های مختلف به ارزیابی پروتئین در دوره‌های

<table>
<thead>
<tr>
<th>TPD</th>
<th>AD</th>
<th>پروتئین دفعی</th>
<th>مقادیر مقدوUV</th>
<th>پروتئین در ریافتن</th>
<th>غذای در ریافتن</th>
<th>معنی</th>
<th>شاخه آماری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>میانگین</td>
<td>انحراف معیار</td>
<td>میانگین</td>
<td>انحراف معیار</td>
<td>میانگین</td>
<td>انحراف معیار</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
<td>(گرم)</td>
</tr>
<tr>
<td>کازنین + سربال</td>
<td>59/3±2%</td>
<td>42/8±4%</td>
<td>21/4±3%</td>
<td>2/7±4%</td>
<td>2/9±3%</td>
<td>4/0±1%</td>
<td><0/001</td>
</tr>
<tr>
<td>سربال</td>
<td>59/2±4%</td>
<td>42/3±3%</td>
<td>21/1±2%</td>
<td>2/7±4%</td>
<td>2/9±3%</td>
<td>4/0±1%</td>
<td><0/001</td>
</tr>
<tr>
<td>غذای خانگی</td>
<td>59/2±3%</td>
<td>42/3±3%</td>
<td>21/1±2%</td>
<td>2/7±4%</td>
<td>2/9±3%</td>
<td>4/0±1%</td>
<td><0/001</td>
</tr>
<tr>
<td>نتیجه آزمون</td>
<td>Non Significant</td>
</tr>
</tbody>
</table>

در جدول 3 میانگین افزایش وزن، گذا و پروتئین در ریافتن حیوانات در گروه‌های مختلف به ارزیابی پروتئین NPR در دوره 14 روزه ارائه شده است. ملاحظه کنید که براساس میانگین افزایش وزن، گذا و پروتئین در ریافتن بین گروه‌های 1 2 و 1 3 از نظر آماری معنی‌دار می‌باشد. لازم به ذکر می‌باشد که میانگین کاهش وزن گروه پروتئین دفعی 21 گرم بوده است.
در جدول ۴ میانگین افزایش وزن، غذا و پروتئین دریافتی حیوانات در گروه‌های مختلف برای تبعیض PER و FER در دوره ۲۸ روزه ارزیابی شده است. ملاحظه می‌شود که آنالیز واریانس میانگین افزایش وزن غذا و پروتئین دریافتی بین سه گروه کازتین، سرلاک و غذای خانگی از نظر آماری ۳ از نظر آمار می‌باشد.

جدول ۴- میانگین افزایش وزن غذا و پروتئین دریافتی حیوانات در گروه‌های مختلف برای تبعیض PER و FER در دوره ۲۸ روزه

<table>
<thead>
<tr>
<th>شاخص‌های آماری</th>
<th>میانگین + انحراف معیار (گرم)</th>
<th>میانگین + انحراف معیار (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کازتین + میوتوین</td>
<td>۷۰۰ ± ۷۵</td>
<td>۷۲۰ ± ۹۰</td>
</tr>
<tr>
<td>سرلاک</td>
<td>۶۵۰ ± ۶۰</td>
<td>۶۸۰ ± ۵۰</td>
</tr>
<tr>
<td>غذای خانگی</td>
<td>۶۰۰ ± ۸۰</td>
<td>۶۲۰ ± ۷۰</td>
</tr>
<tr>
<td>نتیجه آزمون</td>
<td>p < ۰/۰۰۰۱</td>
<td>p < ۰/۰۰۰۱</td>
</tr>
</tbody>
</table>

Non Significant

بحث

با توجه به مالکیت مربوط به مقدار کازتین غذای خانگی و سرلاک می‌توان گفت که میانگین و دفعی افزایش دریافتی در گروه‌های نیاز از میان FER، با استفاده از آزمون TPD به دست آمده برای پروتئین غذای خانگی یک مخلوط برچسب‌دار به است. در حالی که در حیوانات دیگر میان FER در یک مخلوط نسبت بالا و حیوانات [۱] غذای خانگی با کاهش اثر تکمیل یک نوع غلات می‌باشد، در نظر گرفته می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات می‌باشد. ملاحظه می‌شود تا این پروتئین برای خاک‌زی و پرورش که در اثر تکمیل یک نوع غلات M.J. ۹، ۹۶ و ۹۷ [۱۲] غذای خانگی که می‌باشد با این تحقیق.
نیت‌جهت‌گیری

در مجموعاتی در نتایج مطالعه نشان داد که کیفیت پروتئین‌های غذایی خانگی (بر پایه مالت و برنج) تقریباً برای سرلایک و استنادر کازئیین است. حتی ANR بالا از سرلایک می‌باشد.

1- تهیه و تدوین استنداردهای محصولات پروتئین‌های غذایی کودک بر پایه غلات و حیوانات باشد.
2- یا توجه به این که مصرف مخلوط برنج و مالت در گوشت کودکان ایرانی وجود ندارد با فرهنگ‌سازی و آموزش تغذیه مناسب به خصوص در خانوارهای کم درآمد می‌توان مشکلاتی ناشی از غلبه روی را در کودکان کاهش داد.

تشکر و قدردانی

وظیفه خود می‌کنیم از معاونت مهربان پژوهشی و شورای محترم پژوهشی دانشگاه علوم پزشکی کاشان که در تصویب و مرحله اجرایی این طرح (شماره طرح ۸۵۴۳ همکاری داشتند صمیمانه سیاسی گزاری نماییم.

گزارش کردین که باید مطالعه هم‌خوانی دارد در مجموع مقدار NPR کازئیین + متوینیون غذای خانگی و سرلایک (عوامل اصلی در مرجع افزایش وزن گروه تست) کشور وزن گروه فقدان پروتئین و میزان درمان مراقبت از غذای گروه تست می‌باشد تقریباً برای بوده است میزان به باید آمده برای پروتئین غذای خانگی بر پایه مخلوط برنج مالش ۲۷/۴۹/۰۲. به سایر مقادیر میزان آن را در پر، میزان مناسب بر اساس غلات و حیوانات ۲/۵۳ [۱] و در مثال کمکی صدا به باید ۲۰% میزان کردین که می‌توان این تحقیق بود در مطالعات دگیر میزان PER برنج ۲/۷۷ گزارش شد [۱۶] که الگوی علت این پدیده را می‌توان به خاطر کارکرده نیز مشاهده کرد در حفظی از برند حیوانات که می‌توان به وجود بود یکی با چند کسبه احتمالی از نظر بیماری‌ها، مواد معدنی و تغذیه زاده می‌باشد که گرفتار در این مطالعه و دیگر تحقیقات نسبت داد محققان تواست‌نامه تغذیه‌زایی را میان نژادهای مختلف یک گونه جانوری (هیچ‌چون موش صحرایی) از نظر بسیاری کارکرده فیزیولوژیک نشان داد [۲۷] میزان PER به باید در آمده برای پروتئین سرلایک ۲/۴۱/۰۵/۰ است. در حالی که در تحقیقی دیگر میزان آن برای سرلایک ۲/۷۱ [۲] کازئیین. علت این تفاوت در نوعی نورد استفاده و طول مدت مطالعه می‌باشد. میزان PER به باید در آمده برای کازئیین + متوینیون در مطالعه حاضر ۲/۳۱/۰۴. مقایسه دیگر ۴/۶۷ کازئیین کردین [۲۱] در مجموعات آزمون امروزی از غذای خانگی سرلایک و کازئیین، متوینیون از غذای PER معنی‌دار نبود که مناسب خانگی بالاتر از سرلایک می‌باشد. علت این امر مقدار غذا بر پروتئین درمانی در گروه غذای خانگی نسبتاً کمک می‌گذارد (برنج) و حیوانات مناسب و بهتر اسیدهای آمیده ضروری. البته درفلت غذا و پروتئین کمتر در گروه غذای خانگی کودک، منجر به وزن بالاتر و در نتیجه PER بالاتر در گروه مذکور شده است. به طور کلی قابلیت هضم منابع پروتئینی و عملکرد آن کیفیت پروتئینی مواد غذایی تحت تأثیر عوامل متعددی قرار دارد که
References

[25] Shaya NB, Laswai HS, Tiisekwa BP, Nkso KA, Gidamis AB,

Biological Evaluation of Protein Quality of a Sample of Home Made Food in Compare with a Sample of Commercial Baby Food and Casein Standard in Rats

Z. Asemi, MSc¹, M. Taghizade, MSc²

Received: 07/08/07 Sent for Revision: 07/12/11 Received Revised Manuscript: 08/06/16 Accepted: 08/07/19

Background and Objectives: Quality evaluation of the food proteins is important due to their biological and economical aspects. Among existing methods, True Protein Digestibility (TPD), Apparent Digestibility (AD), Net Protein Ratio (NPR), Protein Efficiency Ratio (PER) and Food Efficiency Ratio (FER) are suggested for evaluation of proteins quality. The present study was conducted to biologically evaluate protein quality of a sample of home made food (combination of rice and vetch) and to compare with both a sample of commercial baby food (cerelac - based on wheat) and casein standard in Rats.

Materials and Methods: This experimental study was performed on 64 male Wistar rats, aged 21days under 8 diets in 8 groups including: 2 case diets (home made food and cerelac), 1 diet standard (casein + Methionine) and 1 diet basal (protein free) in order to determine TPD, AD and 2 case diets, 1 diet standard and 1 diet basal in order to determine NPR, PER and FER. Values for TPD, AD, NPR, PER and FER were compared between the groups using ANOVA and Tukey tests.

Results: TPD values for standard, cerelac and home made food were 92.8±4, 87±8 and 81.1±6.1, respectively. For standard cerelac and home made food, AD values were 89.8±4.3, 82.2±8.9 and 76.4±5.8, NPR values were 4.3±0.4, 4.3±0.9 and 4.2±0.4. PER values were 3±0.2, 2.5±0.4 and 2.7±0.6 and FER values were 4.1±0.3, 4.9±0.9 and 4.6±1.2, respectively. There was significant difference between the values of TPD and AD. Values of but NPR, PER and FER were not significantly different between groups.

Conclusion: The findings showed that protein quality of home made food is nearly same as cerelac and casein.

Key words: Protein quality, Commercial food, Vetch, Rice, Casein

Funding: This research was funded by Kashan University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Kashan University of Medical Sciences approved the study.

¹- MSc, Dept. of Nutrition, Food and drug, University of Medical Sciences, Kashan, Iran
(Corresponding Author) Tel: (0361)4463378, Fax: (0361) 4463377, E-mail: asemi_z@yahoo.com
²- MSc, Dept. of Nutrition, Dept. of Nutrition and Biochemistry, University of Medical Sciences, Kashan, Iran