مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هفتم، شماره دوم، تابستان 1387، 122-112

ارزیابی زیستی کیفیت پروتئین یک نمونه غذای خانگی و مقایسه آن با یک نمونه غذای صنعتی کودک و استاندارد کازنی در موسه‌های صحرایی

ذات الله عاصمی؛ محسن تقی‌زاده

چکیده
زمینه و هدف: ارزیابی کیفیت پروتئین مواد غذایی به دلایل بیولوژیک و اقتصادی از اهمیت ویژه‌ای برخوردار است. در بین روش‌های بیولوژیک، قابلیت حضانت هضم پروتئین (TPD) True Protein Digestibility، قابلیت حضانت ظاهری پروتئین (NPR) Net Protein Ratio، نسبت کارآیی پروتئین (AD) Apparent Digestibility و نسبت کارآیی غذای مورد استفاده (FER) Food Efficiency Ratio مناسب برای تعیین کیفیت پروتئین‌ها به‌شماره‌شده است. این مطالعه با هدف ارزیابی زیستی کیفیت پروتئین یک نمونه غذای خانگی (مانل و برجن) و مقایسه آن با یک نمونه غذای صنعتی کودک (سرلک بر پایه گندم) و استاندارد کازنی در موسه‌های صحرایی انجام گرفت.

مواد و روش‌ها: این تحقیق تریوی 46 موش صحرایی نر 21 روزه از نژاد ویسترا در گروه‌های 8 نابی تحت 8 رژیم غذایی شامل: دو رژیم استاندارد (کازنی و سرلک) یک رژیم استاندارد (کازنی، متفاوت) و یک جدول غذای (افاده پرکل) برای مطالعه AD، TPD، NPR، FER و PER نمود. میزان مصرف مور در صورت عدم مصرف مواد غذایی مورد بررسی قرار گرفت.

یافته‌ها: شاخص TPD 0.72±0.03 و NPR 0.74±0.02 AD 0.71±0.01 و FER 0.72±0.02 و PER 0.75±0.01 در دسترس بود. نتایج آزمون‌های آماری تکنیک آنالیز واریانس (ANOVA) و مقایسه دو گروه (Tukey) همراه با آزمون توکی (Morris) در صورت نغص میزان مصرف مورد تعیین قرار گرفت.

نتیجه گیری: بافت‌های بافت‌های خاصی می‌دهند که کیفیت پروتئین غذای خانگی از ترتیب برابر سرلک و استاندارد کازنی است.

واژه‌های کلیدی: کیفیت پروتئین، غذای صنعتی، مانل، برجن، کازنی

1- تلگرام: 09139512370، مربی و کارشناس ارشد معاونت غذا و دارو، دانشگاه علوم پزشکی کاشان
2- asemi_z@yahoo.com
مقدمه
زمینی که شمار به تنها نمی‌تواند تیزی‌های غذاهای کمکی آغاز می‌شود [1]. کمبودهای غذایی در دوران کودکی منجر به کاهش رشد می‌گردد. اختلال غذایی در دوران کودکی عامل اصلی ایجاد کوارتسرکور و ماراسموس است [1]، بلند مدتی بعد قدرت قلب شیرخوار، مناسب‌ترین زمان جهت ارائه غذاهای نیمه‌جامه، 4 تا 6 ماهگی است [2]. بنابراین در دوران کودکی بعد از سن میزان شکم‌پذیری کم‌سازی شده‌شود، نشان می‌دهد که کاهش می‌اشد [2]. در کشورهایی در حال توسعه رژیم‌های تکمیلی، عمدها شال غلات و حیوانات به همراه برخی از غذاهای حیوانی، می‌باشد. با دلیل قیمت بالای پروتئین‌های حیوانی، اقداماتی در جهت یافتن سایر منابع گابزین پروتئین، از قبیل مانع گیاهی صورت گرفته است [1]. در مناطقی که غلات به عنوان غذاهای اصلی مصرف می‌شناشند تهیه غذاهای کمکی سنتی، به طور عمدی در زمینه دانشگاه علوم پزشکی ایران، تحقیقات آزمایشگاهی انجام شده‌اند. که کمی‌کیفی پروتئینی این تکیهبندیه در مقایسه با پروتئین‌های حیوانی، باینی است [4]، تحلیل آزمایش آزمایش نشان می‌دهد که میزان اسیدهای آمینه لزین و ترنیتوفان کم و مقدار اسیدهای آمینه گوگوکارد از قبیل میتوبین و سیستین به حد کافی به کاهش می‌آید [6]. آزمایش استدیوم انسیان نشان می‌دهد که اسیدهای آمینه گوگوکارد از قبیل میتوبین و سیستین پایین ولی به مقدار کافی لزین و ترنیتوفان دارد [1]. بنابراین در اثر تکیه یک نوع غلات با حیوانات مناسب کیفیت پروتئینی افزایش می‌یابد [6]. از طرف دیگر استفاده بهینه از پروتئین‌های سرد بدن تابع قابلیت هضم و اکثر اسیدهای آمینه ضروری می‌باشد [7]. از این رو، تطبیقی کیفیت پروتئین و ارزیابی موارد غذایی مصرف، در برنامه‌ریزی‌های غذایی به لحاظ پیشگیری لازم است [8]. همچنین قرار دادی می‌تواند دارای گیاه و زست فراهمی است. اسیدهای آمینه ضروری و در نهایت کیفیت پروتئین محصول تأثیر می‌گذارد [9]. بنابراین، ضرورت استفاده از روش‌های دقیق، حساس، دقت، سریع و قابل اجرا جهت تطبیقی
پروتئین از ماس، یک رژیم استاندارد (کازتنی، متیونین) و
یک رژیم پایه (فاضل پروتئین) و در زیست آزمون‌های
NPR و FER مشابه NPR و FER و FER (شرايط مطالعه) است
این تفاوت که طول مدت مطالعه 28 روز و همچنین
فاضل پروتئین پایه می‌باشد (به عبارت دیگر برای محاسبه
رژیم نباید به رژیم پایه نیست). با توجه به ترکیب
سرلاک، ماس و پیرین، مقداری مواد غذایی و مواد غذایی
اصلی برای رژیم‌های تجربی تنظیم گردید (جدول 1).

جدول 1 - مواد اولیه برای تهیه رژیم‌های غذایی تجربی بر حسب گرم در صد کرم

<table>
<thead>
<tr>
<th>مواد غذایی</th>
<th>اجزاء رژیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>کازتنی</td>
<td>برنج + ماس</td>
</tr>
<tr>
<td>سرلاک</td>
<td>53/4</td>
</tr>
<tr>
<td>ماس عضوی دزفل</td>
<td>17/2</td>
</tr>
<tr>
<td>برنج طارم مانندان</td>
<td>51/2</td>
</tr>
<tr>
<td>شکر</td>
<td>5</td>
</tr>
<tr>
<td>روغن غنی اول</td>
<td>10</td>
</tr>
<tr>
<td>روغن غنی دوم</td>
<td>10</td>
</tr>
<tr>
<td>روغن غنی سوم</td>
<td>15</td>
</tr>
<tr>
<td>روغن غنی چهارم</td>
<td>4</td>
</tr>
<tr>
<td>روغن غنی پنجم</td>
<td>5</td>
</tr>
<tr>
<td>روغن غنی چهارم + موتیونین</td>
<td>5</td>
</tr>
<tr>
<td>روغن غنی چهارم + کولین کلرید</td>
<td>0/2</td>
</tr>
<tr>
<td>روغن غنی چهارم + نشانه‌های نشات</td>
<td>7/3</td>
</tr>
</tbody>
</table>

1- تهیه شده بر اساس میزان چربی موجود در مواد غذایی هر گرم. برای رسیدن به سطح 10% چربی در رژیم تهیه
2- تهیه شده بر اساس میزان فيبر (سلولز) موجود در مواد غذايی هر گرم. برای رسیدن به سطح فيبر 5 در رژیم تهیه

تربیبات ماس و برنج را پس از یک خنثی شرایط معمولی یکت
چهت مصرف انسان و خشک کردن در دمای 70 درجه
ساین گراد انگیزه (به مدت 3 ساعت)، به صورت بود در
آورده و ترکیب سرلاک به همان شکل که در داروخانه‌ها
موجود است بعد از مخلوط کردن از تمامی اجزای رژیم (از
قبیل ویتامین، املاح، شکر و غیره) در داخل ظروف

مشارکت‌ها

مجله دانشگاه علوم پزشکی رفسنجان
دوره 7، شماره 2، سال 1387
اطر دفع شده در مدلگری گروه بدون پروتینین:

$NF_2 = AD$ محسوب می‌شود با کمک رابطه زیر انجام می‌گردد [2012].

$AD = \frac{N - NF_1}{NF_1} \times 100$

طول مدت مطالعه برای NPR. N咆و در مدت 14 روز برای ارائه در اختیار نمونه‌های قرارداد داده شد و غذا ریخته شده در چهار فقر 70 درصد پروتئین در طول مدت تهیه می‌شود. در پایان، مقدار پروتئین در وقتی توسط متریال محاسبه و NPR به کمک رابطه زیر استانداردی شد.

$NPR = \frac{\text{صاف قهوه اسپرسونی بدن} \times 100}{\text{بسته برای انجام}}$

میزان افزایش وزن بدن (گرم) مقدار پروتئین مصرفی (گرم) محاسبه می‌شود با کمک رابطه زیر انجام می‌گردد [2012].

$\text{PER} = \frac{\text{میزان افزایش وزن بدن}}{\text{مقدار پروتئین مصرفی}}$

$\text{PER} = \frac{\text{میزان افزایش وزن بدن}}{\text{مقدار غذا مصرفی}}$

روش‌های آماری

چهار مشابهی میزان اطمینان (Tukey) آنتیل‌اپسین و آنتی‌ایپسین ANOVA استفاده شد. در تمام موارد $p \geq 0.05$ معنی‌دار تلقی شده است.

نتایج

میانگین غذا و پروتئین در اختیار توسط AD مقدار مطالعه برای تعیین در TPD و NPR. دفعی در گروه‌های مورد مطالعه برای تعیین NF و TPD توسط Ni مقدار اطلاعی گروه تست NFI با کمک رابطه زیر دفع شده در مدلگری گروه تست NFI.
جدول 2: میانگین و گونه دریافتی، مقادیر متفاوت و پروتئین دفعی در گروه‌های مختلف برای تعبیر از نتایج در دوره نمونه‌برداری

<table>
<thead>
<tr>
<th>TPD</th>
<th>AD</th>
<th>پروتئین دفعی</th>
<th>مقادیر متفاوت</th>
<th>پروتئین دریافتی</th>
<th>غدا دریافتی</th>
<th>منگر</th>
<th>بانه</th>
<th>میانگین + میانویس</th>
<th>شاخص آماری</th>
<th>انحراف معیار</th>
<th>انحراف معیار</th>
<th>انحراف معیار (کم)</th>
<th>انحراف معیار (کم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>کازنیسی + سرفیل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92±8</td>
<td>83±1</td>
<td>128±1</td>
<td>10±1</td>
<td>128±1</td>
<td>11±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87±8</td>
<td>83±1</td>
<td>128±1</td>
<td>10±1</td>
<td>128±1</td>
<td>11±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81±8</td>
<td>83±1</td>
<td>128±1</td>
<td>10±1</td>
<td>128±1</td>
<td>11±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>نتیجه آزمون</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non Significant

در جدول 2 میانگین افزایش وزن غذا و پروتئین دریافتی NPR در دوره 14 روزه در مورد افزایش وزن از نظر آماری معنی‌دار نبود. بر اساس خیزه کاهش وزن غذا و پروتئین دریافتی بر اساس NPR در دوره 14 روزه نمونه‌برداری

جدول 3: میانگین افزایش وزن غذا و پروتئین دریافتی حیوانات در گروه‌های مختلف برای تعبیر از نتایج در دوره نمونه‌برداری

<table>
<thead>
<tr>
<th>NPR</th>
<th>پروتئین دریافتی</th>
<th>غذا دریافتی</th>
<th>منگر</th>
<th>بانه</th>
<th>میانگین + میانویس</th>
<th>شاخص آماری</th>
<th>انحراف معیار</th>
<th>انحراف معیار</th>
<th>انحراف معیار (کم)</th>
<th>انحراف معیار (کم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43±1</td>
<td>128±1</td>
<td>111±1</td>
<td>16±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43±1</td>
<td>128±1</td>
<td>111±1</td>
<td>16±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43±1</td>
<td>128±1</td>
<td>111±1</td>
<td>16±1</td>
<td>95±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>نتیجه آزمون</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non Significant
در جدول ۴ میانگین افزایش ون، غذا و پروتئین دریافتی حیوانات در گروه‌های مختلف برای تعیین PER در دوره ۲۸ روزه از آغاز شده است. ملاحظه می‌شود که آنالیز واریانس میانگین افزایش ون، غذا و پروتئین دریافتی بین سه گروه کازنتین+متیوبرین، سرلارک و غذای خانگی از نظر آماری کازنتین+متیوبرین در بهترین وضعیت قرار گرفته است.

جدول ۴- میانگین افزایش ون، غذا و پروتئین دریافتی حیوانات در گروه‌های مختلف برای تعیین PER و FER در دوره ۲۸ روزه

<table>
<thead>
<tr>
<th>جزئیات</th>
<th>PER (گرم)</th>
<th>FER (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین افزایش ون</td>
<td>میانگین انحراف معیار</td>
<td>میانگین انحراف معیار</td>
</tr>
<tr>
<td>پروتئین دریافتی</td>
<td>۱۵۷/۶±۳/۷</td>
<td>۱۲۳/۶±۲/۴</td>
</tr>
<tr>
<td>غذای دریافتی</td>
<td>۱۰۴/۲±۳/۹</td>
<td>۱۸۷/۶±۲/۴</td>
</tr>
<tr>
<td>کازنتین</td>
<td>۴۱/۶±۱/۳</td>
<td>۳۹/۶±۲/۹</td>
</tr>
<tr>
<td>سرلارک</td>
<td>۳۹/۶±۱/۳</td>
<td>۳۱/۶±۲/۸</td>
</tr>
<tr>
<td>غذای خانگی</td>
<td>۳۱/۶±۲/۸</td>
<td>۲۰/۹±۲/۸</td>
</tr>
<tr>
<td>معنی‌دار ۴۱/۶±۱/۳</td>
<td>۳۹/۶±۲/۹</td>
<td>۳۱/۶±۲/۸</td>
</tr>
<tr>
<td>p<۰/۰۰</td>
<td>p<۰/۰۰</td>
<td>p<۰/۰۰</td>
</tr>
</tbody>
</table>

*Non Significant

بحث

ابن تحقیق نشان داد که کیفیت پروتئین غذای خانگی تصربا برای سرلارک و استاندارد کازنتین است. میزان TPD به دست آمده برای پروتئین غذای خانگی بر پایه مخلوط برتین+مش متوسط ۸۱/۲/۶/۱ برای برتین+مش ۱۸/۷/۶/۸ می‌باشد. ملاحظه می‌شود در اثر کمک یک نوع غلات مناسب (برنج) با پک حیوانات مناسب (مار) کیفیت پروتئین آن بهبود خواهد یافت [۶]. میزان TPD به دست آمده برای سرلارک ۸۷/۶±۸ است. در حالی که سایر محاقفان (پرورش سرلارک) میزان آن ۱۱/۶/۷ (۹۴/۹) کازنتین برابر با میزان تاکید شده در مورد سرلارک در مطالعه حاضر به علت تفاوت در نوع مصرف (سرلارک بپایه گذم در این مطالعه) و عدم کنترل دقیق در مراحل تولید نمونه باشد. میزان TPD برای پروتئین کازنتین+متیوبرین در این تحقیق ۹۶/۸/۷ بود. سایر محاقفان میزان آن ۹۶/۸/۷ بود. کازنتین که مشابه با این تحقیق
گزارش کردن که با یا مطالعه هم‌خوانی دارد در مجموع مقدار NPR کازنی + متون‌نی نزدیکی و سرلک یک در مجموع اصلی در افزایش وزن گروه نسبت کاهش وزن گروه فاقد پروتونی و میزان درمان پروتونی گروه نسبت می‌باشد تقریباً برای PER بوده است. میزان PER به دست آمده برای پروتونی غذای خانگی بر یابه مخلوط برج، مانند 1/27/5 برکنار محقق میزان آن را در یک مخلوط مناسب بر اساس غلات و حیوانات 0/34 (1) و در مانش تکمیل شده با 0/15 میزان کردن که مشابه برای یافته بود در مطالعه دیگر میزان برJK

گزارش شد (16) که یکی از علل این دیده به نظر کارکرد غذای خانگی با تغییرات و فشار خونی در جلدهای سایر اعضای آشتهEUR

نتیجه‌گیری

در مجموع نتایج مطالعه نشان داد که کیفیت پروتونی غذای خانگی (بر پایه مان و برج) تقریباً برای سرلک و استاندارد کازنی است تحت PER بأن بالاتر از سرلک می‌باشد.

بنابراین بیشتران می‌شود:

1- تهیه و تدوین استاندارد برای محصولات پروتونی غذای کودک بر پایه غلات و حیوانات باشد.

2- از توجه به این که مصرف مخلوط برج و مان در الگو غذای کودکان ایرانی وجود ندارد با فرشه‌گزاری و آموزش تغذیه مناسب به خصوص در خانواده‌های کم درآمد می‌توان مشکلات ناشی از سوءتغذیه را در کودک‌ان کاهش داد.

تشکر و قدردانی

وظیفه خود می‌دانیم از معاون محرمان پزشکی و شورای محترم پزشکان دانشگاه علوم پزشکی کاشان که در تصنیف و مراحل اجرای این طرح (شعر طرح 8594 همکاری داشتند صمیمانه سپاسگزاری نمایم.

۱۹۸۷ دوره ۵ شماره ۲، جلد
References

[25] Shaya NB, Laswai HS, Tiisekwa BP, Nnko SA, Gidamis AB,

Biological Evaluation of Protein Quality of a Sample of Home Made Food in Compare with a Sample of Commercial Baby Food and Casein Standard in Rats

Z. Asemi, MSc¹, M. Taghizade, MSc²

Received: 07/08/07 Sent for Revision: 07/12/11 Received Revised Manuscript: 08/06/16 Accepted: 08/07/19

Background and Objectives: Quality evaluation of the food proteins is important due to their biological and economical aspects. Among existing methods, True Protein Digestibility (TPD), Apparent Digestibility (AD), Net Protein Ratio (NPR), Protein Efficiency Ratio (PER) and Food Efficiency Ratio (FER) are suggested for evaluation of proteins quality. The present study was conducted to biologically evaluate protein quality of a sample of home made food (combination of rice and vetch) and to compare with both a sample of commercial baby food (ceralac - based on wheat) and casein standard in Rats.

Materials and Methods: This experimental study was performed on 64 male Wistar rats, aged 21 days under 8 diets in 8 groups including: 2 case diets (home made food and ceralac), 1 diet standard (casein + Methionine) and 1 diet basal (protein free) in order to determine TPD, AD and 2 case diets, 1 diet standard and 1 diet basal in order to determine NPR, PER and FER. Values for TPD, AD, NPR, PER and FER were compared between the groups using ANOVA and Tukey tests.

Results: TPD values for standard, ceralac and home made food were 92.8±4, 87±8 and 81.1±6.1, respectively. For standard ceralac and home made food, AD values were 89.8±4.3, 82.2±8.9 and 76.4±5.8, NPR values were 4.3±0.4, 4.3±0.9 and 4.2±0.4. PER values were 3±0.2, 2.5±0.4 and 2.7±0.6 and FER values were 4.1±0.3, 4.9±0.9 and 4.6±1.2, respectively. There was significant difference between the values of TPD and AD. Values of but NPR, PER and FER were not significantly different between groups.

Conclusion: The findings showed that protein quality of home made food is nearly same as ceralac and casein.

Key words: Protein quality, Commercial food, Vetch, Rice, Casein

Funding: This research was funded by Kashan University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Kashan University of Medical Sciences approved the study.

¹- MSc, Dept. of Nutrition, Food and drug, University of Medical Sciences, Kashan, Iran
(Corresponding Author) Tel: (0361) 4463378, Fax: (0361) 4463377, E-mail: asemi_z@yahoo.com
2- MSc, Dept. of Nutrition, Dept. of Nutrition and Biochemistry, University of Medical of Sciences, Kashan, Iran