مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هفتم، شماره دوم، تابستان 1387، شماره 130-142

نقش گیرندگی‌های گل‌کورتیکوییدی ناحیه میانی سیتوم در روند تثبیت حافظه
فضایی در موس صحرایی

دکتر عباسقلی وفاوی 1، علی جلالی 2، دکتر علی رشیدی‌پور 3، دکتر عباسقلی طاهریان 4

چکیده
زمینه و هدف: مطالعات قبلی نشان داده که ناحیه میانی سیتوم نقش مهمی در پاگیری فضایی داشته و احتمالاً فعالیت گیرندگی‌های گل‌کورتیکوییدی در این ناحیه بر یادگیری هیجانی و دیگری حافظه فضایی اثر می‌گذارد. هدف این تحقیق تعبیه نقش گیرندگی‌های گل‌کورتیکوییدی ناحیه میانی سیتوم در روند تثبیت حافظه فضایی موس صحرایی در مدل مار آب مورس بوده است.

مواد و روش‌ها: این مطالعه تجربی بوده و طی آن از 50 سر موس نر نژاد وستار با وزن 350 تا 450 گرم استفاده شد. ابتدا روی ناحیه میانی سیتوم کانال را به عنوان قرار داده شد. یک هفته بعد بر روی سیتوم به پاگیری فضايی مدل مار آب مورس (8 بار در طی یک روز) آموزش داده شدند. بلافاصله بعد از آخرین مرحله آموزش داروی کورتیکوسترون در دوره‌های مختلف (10-100 و 200 گرم در هر 50 میلیویلتر) به داخل ناحیه میانی سیتوم تزریق شد. گروه کنترل نیز با حجم مساوی حلال دارو دریافت کرد. 48 ساعت بعد، در طی 30 ثانیه، میزان حافظه حیوان با استفاده از متغیرهای درصد مدت زمان و مسافت طی شده در ناحیه هدف و مقابل ارزیابی شد.

یافته‌ها: بررسی آماری نتایج نشان داد که تزریق دوره‌های مختلف کورتیکوسترون، بلافاصله بعد از آموزش در ناحیه میانی سیتوم در مقایسه با گروه کنترل تأثیر معنی‌داری بر میزان درصد زمان و مسافت طی شده در ناحیه هدف نداشت و تغییر معنی‌داری در روند تثبیت حافظه فضایی ایجاد نموده است.

نتیجه‌گیری: یافته‌های فوق نشان می‌دهند که گیرندگی گل‌کورتیکوییدی ناحیه میانی سیتوم، نقشی در تثبیت اطلاعات تازه آموزشی نمی‌گزارد.

واژه‌های کلیدی: حافظه فضایی، کورتیکوسترون، ناحیه میانی سیتوم، مار آب مورس

1. تولید و نشر: دانشگاه علوم پزشکی، مراکز تحقیقات فیزیولوژی، دانشگاه علوم پزشکی
2. ایمیل: AAvaF43@yahoo.com
3. فاکس: 331-337-238, 331-337-239, 1387
4. تلفن: 021-337-238, 331-337-239, 1387

2. ژن‌های سرخ: گروه آموزشی فیزیولوژی، دانشگاه علوم پزشکی
3. ژن‌های سرخ: گروه آموزشی قلبی و روند تثبیت حافظه فضایی، دانشگاه علوم پزشکی
4. ژن‌های سرخ: گروه آموزشی قلبی و روند تثبیت حافظه فضایی، دانشگاه علوم پزشکی
5. ژن‌های سرخ: گروه آموزشی قلبی و روند تثبیت حافظه فضایی، دانشگاه علوم پزشکی
مقدمه

طالعات قبلی نشان داده‌اند که ساختارهای مهم مغزی از جمله هیپوکمپ، امیگنال، هسته اکومینس و ناحیه سینم در پردازش اطلاعات جدید مربوط به رشددهیه هیپاگی نقص مهمی را دارای می‌کنند. این نواحی، ارتباط عمیقی با یکدیگر و با قسمت‌های مختلف مغز دارند. از طرفی با توجه به وجود ارتباطات قوی عصبی (استینگ و غیراستینگ) بین هیپوکمپ و ناحیه سینم و اختلافات نسبی متایه‌ای که به دنبال ناپایین ساختارهای راهه‌ای ارتباطی این نواحی در حافظه ایجاد می‌شود، به شکلی که در باغ‌های هیپاگی در خود هستند [1]. از طرفی نواحی زیادی نشان دهند که به دنبال بروز حوادث هیپاگی، هورمون‌های مشخص ترشح شده و همراه با واسطه‌گری ساختارهای مغزی در تعیین دخیره حافظه دخالت می‌کنند [2-3]. یک از هورمون‌های متولیان ناشی از هیپاگی و استرس در موس‌صحراپی، گلکوگانتیکوپوده می‌باشد که در پایان به فشارهای هیپاگی تحت فشار فتیله ترشح شده و از طریق اتصال به گلکوگانتیکوپوده در ناحیه مختلف مغزی یک کمک به سازگاری با هیپاگی، در تعیین دخیره حافظه هیپاگی داخل می‌پایند [1-3]. توجه به اینکه دلیل تغییرات مغزی می‌تواند در باغ‌های هیپاگی دچار افسردگی گلکوگانتیکوپوده اثر متعلق و وجود دارد [2-3]. از طرفی ناحیه می‌توان این نواحی یک شکستگی ایجاد می‌کند که در رشددهیه هیپاگی خود رشددهیه هیپاگی از باغ‌های هیپاگی خود در ناحیه می‌تواند یک منجر به تعیین دخیره حافظه هیپاگی باشد [4]. به‌طور کلی، تغییرات مغزی می‌تواند در باغ‌های هیپاگی داخل می‌پایند [4].

با این حال، هر چند مطالعات قبلی نشان‌دهنده‌اند که ضروری است که در مراحل مختلف باگ‌های و دخیره حافظه فضایی به‌صورت انتکاپ و نتیجه‌گیری هیپاگی نقص ضروری دارد [5-6].

داخل بطن جانی دخیره حافظه را در مدل باگ‌های انتکاپ مهارت کاهش می‌دهد [6-7].
مواد و روش‌ها

حیوانات: این مطالعه به روش تجربی بر روی 50 سر موش نر از نژاد سیاه‌پوست و مابین 4 و 5 گروه گرفته شد. موش‌ها در فلزیاتی به نام طبیعی و در یک اتاق با دمای 24 درجه سانتی‌گراد و نور طبیعی نگهداری می‌شدند. این موش‌ها برجسته‌ترین نژاد‌های موش بود.

الف- کانون گذاری و سازگاری با محیط: ابتدا هر یک از موش‌های صحرایی به بازوی کتانین به روش گرفته می‌شد. سپس این موش‌ها به سایر انواع موش‌های صحرایی اضافه می‌شدند و با استفاده از اطلس موش در دست نوحه سطحی با استفاده از Pannino & Watson مختصات ناحیه میانی سیستوم روی جمجمه موش صحرایی تعیین شد. (DV=0/00، میلی‌متر، AP=0/00، میلی‌متر، LV=0/00، میلی‌متر)

ب- به‌دست آماده‌سازی موش: در یک آزمودن هر یک از موش‌ها به‌طور نرمال می‌شد. سپس این موش‌ها به یک گروه موش‌های صحرایی اضافه می‌شدند.

"کلکوکی" نام آنتی‌بیوتیکی است که با روش گرفته می‌شود. همچنین "کالو لب" از این موش‌ها نیز برای ایجاد آنزیم‌ها به‌کار برده می‌شود.

روش مطالعه: یادگیری فضایی بین ماه‌آبی موشر

دستگاه: می‌باشد که تا ارتفاع 25 سانتی‌متری از آب درجه سانتی‌گراد در شرایط نور نور و سه سیستم روانی مفصل قرارگرفته بودند.

سیستم روانی باید کامپیوتری می‌شد که حرکت موش‌ها را در نظر می‌گرفت. این سیستم به میلی‌ثانیه‌های می‌رسید.
نتایج

1- ارزیابی روند آموزش حیوانات: در بررسی داده‌های حاصل از مرحله آموزش رت‌ها، افتخاره‌ای ماهی که از آن است که هم‌هما رت‌ها باید قابل قبول داشته باشند و در این خصوص نمونه‌گیری 12 روند نگهداری رت‌ها را با پیشرفت دفعات آموزش نشان می‌دهد. انتزاع انتزاع‌های یک‌طرفه این زمان‌ها با اندازه‌گیری تکرار روتی که در هم‌هنا رت‌ها با کمک کاهش Escape Latency پیشرفت آموزش، زمان ایفا سکو یافته است [7]:428. این یافته نشان می‌دهد که هم‌هنا گروه‌ها روند یک‌طرفه مشابه داشته‌اند.

تنزیل

کنترل

ورون کریستستون 15

ورون کریستستون 10

ورون کریستستون 5

ورون کریستستون 0

دهفته آموزش

نمودار 1- متغیرهای حیوانات در طی دفعات آموزش در ارزیابی روند تکنی حیوانات.

2- اثر تزریق دوگانه مختلف کورتئسون و به داخل الناپ سیتوپلومی بی‌روند تئیپ اطلاعات در این خصوص باقاعدگی بعد از آموزش، کورتئسون در دوگانه مختلف به داخل الناپ سیتوپلومی یک درصد آموزش تزریق شد (0.004). می‌توان گفت که در پایان آزمایش‌ها، موش‌ها با تزریق کمکی به داشتن 100 میلی گرم به ایا در کلیولوکوم وزن بهره‌مند شدند و پس از دو ماه میزان کوره از جمجمه خارج و برای روز 10 میلی گرم به فرمالین 1/18 روز داده شد. سپس

الف- مدت زمان سپرده شده در ناحیه هدف و مقابل آن:
بحث

یافته‌های این مطالعه نشان دادند که ترکیب مستقیم آگونیست گیرنده‌های گلوکورتکسین‌پید به داخل ناحیه میانی سیتوب روند تنش موارد با دقتی فضایی جدید در مدل نورون مورس اثر معنی‌داری ندارد. این نتایج نشان‌دهندهٔ این می‌باشد که گیرنده‌های گلوکورتکسین‌پید در ناحیه میانی سیتوب در تعیین ذخیره‌ها حاصله، فضاهایی در مدل بادگیری فضایی دخالت ندارند. این یافته با یافته‌های مطالعات قبلی که طی آن‌ها تنها گیرنده‌های گلوکورتکسین‌بندی بر ذخیره حاصله در دیگر نواحی مغز بررسی شده بود همخوانی ندارد [13-14]. مطالعات قبلی نشان داده‌اند که ساختارهای زیادی از مغز جهت هیپکمی، امیگدال و اکوستی با واسطه‌گری چند گلوکورتکسین‌پیده، در فرآیند حاصله فضایی دخیل هستند [12-16].

از جا که مطالعات قبلی حضور سیستموزی نوروتراتیسمیتری فراوان از جمله کولی تریپک، سروترونزیک، گلوتامینزیک، آدرنرژیک که در بادکنکی و حافظه نش، مشخص دارند را در ناحیه میانی سیتوب اثبات نموده‌اند [5] احتمال می‌روه که در ناحیه این ترکیبی و حافظه هیپکمی از طریق اثر متقابل با آن سیستم‌ها به ویژه گیرنده‌های گلوکورتکسین‌پیدی با عوامل دیگری عامل شود.

به علاوه، یافته‌های مطالعات رفتاری و الکترفیزیولوژی قبلی نشان دادند که انتساب ایجاد شده ناشی از گلوکورتکسین‌پیدها با روز ذخیره حاصله به طور مستقیم و

نمودار ۴. درصد زمان گذشته‌های شده در بر حسب و مقابل آن را نشان می‌دهد. این اثر می‌تواند با دقتی در ناحیه حاصله و مقابل آن در بین گروه‌های در حال فناخت کننده گلوکورتکسین‌پید و کنترل تفاوت معنی‌داری وجود نداشته.

نمودار ۳-۲ا. ترکیب گلوکورتکسین‌پید در دوره‌های مختلف به داخل ناحیه میانی سیتوب به کمک اطلاعات.

ب- مسافت طی شده: نمودار ۳ مسافت طی شده در گروه‌های مختلف در طی تست Probe را نشان می‌دهد. آنالیز آماری حاکی از عدم وجود تفاوت معنی‌دار بین گروه‌ها می‌باشد.

نمودار ۳-۲ب. سرعت حرکت: نمودار ۴ سرعت حرکت را در طی تست شان می‌دهد. آنالیز آماری حاکی از عدم وجود تفاوت بین گروه‌ها بود.
گلوکورتینوکوپید (دگراتازون) را بلوند می‌کند. [12] بر این اساس احتمال مرود برای ظاهر شدن اثرات گلوکورتینوکوپیدا بر تنیب و ذخیره حافظه در ناحیه میانی سپتوم، فعلی بدون فیبرینوزیک و با دیگر سیستم‌های نورونارتیمیتی و این پاسیون آنها در این ناحیه ضروری باشد که برای شناخت و رفع ابهامات موارد با انجام آزمایشات تکمیلی لازم به نظر مرسد.

همچنین بررسی داده‌ها، در مراحل آموزش نشان می‌ده که همه حیوانات از روند دیدگاری تنها مطلوب برخودار بوده و ضمانت بررسی سیستم‌شناسی طی شده توسط حیوانات و و سرعت حرکت آنها در طی مرحله بروز نشان می‌دهد که تریک داروها بر فعالیت حسی محتویات تأثیر معنی‌داری نداشته است [17]. این نتیجه بانگر است که تریک داروها بر فعالیت حسی باعث می‌گردد. عایق اثر بوده و عدم تغییر معنی‌دار در روند تنیب دیدگری ناشی از عدم تأثیر داروها بر این روند بوده است.

نتیجه‌گیری

یک طور کلی مطالعه حاضر نشان می‌دهد که گلوکورتینوکوپیدا در ناحیه میانی سپتوم تأثیر مثبتی در واسطه‌گری فراپای دیدگاری و ذخیره حافظه حیوانات دیدی بازی نمی‌کند. البته برای تعیین دیگر عوامل و سیستم‌های نورونارتیمیتی در گیپ و اثرات جستجو با نواحی دیگر، مطالعات بیشتری لازم است.

بحث و قضاوت

این مقاله حاصل پایان‌نامه جهت دکتری پرستیکی بوده است. از کلیه استادان و همکاران محترم گروه و مرکز تحقیقات فیزیولوژی بیمه ورک اثبات صادقی که در انجام کارهای علمی همیار می‌باشد تغذیه و تشریح به عمل می‌آید.

وضعیت واسطه‌گری می‌شود و ضمناً این اثرات در مكان های دیدی می‌شود که دبی کن تراکم موثر نا پایا در تراکم باعث در اثرات گلوکورتینوکوپیدای مشابه [16-15] برای مثال شواز زاکی وجود دارد که گلوکورتینوکوپیدای بر تریک فیبرینوزیک و LTP (Long Term Potentiation) در ناحیه خلفی هیپوکامپ که در آن با تراکم بالایی از گلوکورتینوکوپیدای است اثر می‌گذارد [6] و در همست قادعیت جایگاه اکسیدال که بالا تراکم موثری از گلوکورتینوکوپیدای است موجب تکثیر دیجیت حافظه می‌شود [9].

بنابراین احتمال مرود که ناحیه میانی سپتوم حاوی تراکم پایین‌تری از گلوکورتینوکوپیدای نسبت به نواحی دیگر باشد که در نتیجه دوره‌ای مصرف استفاده در مطالعه حاضر می‌تواند اثر مطلوب بر فعالیت این گریدهای و نهایتاً تغییر فعالیتی و حافظه در این ناحیه باشد و با اینکه احتمالاً عامل ناشناخته دیگری اثرات گریدهای گلوکورتینوکوپیدای را تنیب حافظه در ناحیه میانی سپتوم واسطه‌گری می‌کند.

از طرفی در مطالعات قبلی نشان داده شده که در خصوص اثرات کورتیکوستورون بر اکسپاب و تنیب حافظه تعامل بین گریده‌های گلوکورتینوکوپیدای با سیستم‌های نورونارتیمیتی مفعول از جمله اپوزیسیون [17] و ورودرزیک در هیپوکامپ و هسته فندبیتل جایگاه اکسیدال [15] ضروری است. در این مورد با اثبات‌های مطالعات قبلی نشان داده است که سیستم بالاترین‌ترین هیپوکامپ و اکسیدال ناشی می‌شود اثر گلوکورتینوکوپیدای تنیب و ذخیره حافظه دارد. اثر تریک آنتانوستین بالاترین‌ترین با داخل ناحیه پشتی هیپوکامپ افزایش حافظه ناشی از اثر سیستم‌های با داخل هیپوکامپ
References

The Role of Glucocorticoids Receptor in Medial Septal Area on Spatial Memory in Rats

AA. Vafaei PhD¹, A. Jalal GP², A. Rashidy-Pour PhD³, AA. Taherian GP⁴

Received: 07/07/21 Sent for Revision: 07/12/19 Received Revised Manuscript: 08/02/07 Accepted: 08/03/03

Background and Objectives: Previous studies indicated that Medial Septal Area (MSA) plays an important role in spatial memory and glucocorticoid receptors have probably effects on emotional learning and memory storage in this area. The aim of this study was determination of the role of glucocorticoid receptors in MSA on spatial memory in rats.

Materials and Methods: In this experimental study 50 albino rats (250-300 g) were used. Animals that carrying cannula aimed at theire MSA were trained in a water maze task in a session consisting of 8 trials per day. Immediately after last training session different doses of corticosterone (10, 50, 100 or 200 ng in 0.5μl) or vehicle were injected into MSA. Performance of each rat was tested 24 hours after the final training day in a 60 second probe trial. The parameters measured in probe test were percent time spent and swim distance in the target and opposite quadrants.

Results: Statistical analysis of data indicated that injection of different doses of corticosterone immediately after training into MSA did not cause significant differences between control and treated animals on probe test performance and consolidation process (p> 0.05).

Conclusion: Findings of this study showed that activation of glucocorticoid receptors in MSA did not play a role in spatial memory consolidation in rats.

Keywords: Spatial Memory, Corticosterone, Medial Septum Area, Morris Water Maze

Funding: This research was funded by Vice persident in reaserch of Semnan University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of the Treatment of the Animals whithin Semnan University of Medical Sciences approved the study.

1- Associated Prof., Dept. of Physiology, Learning and Memory Lab., Physiology Research Center, University of Medical Sciences, Semnan, Iran
 (Corresponding Author) Tel:(0231) 3332080, Fax: (0231) 3331551, E-mail: aaavaf43@yahoo.com
2- General Physician, Dept. of Physiology, Learning and Memory Lab. Dept. and Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
3- Prof., Dept. of Physiology, Learning and Memory Lab. Dept. and Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
4- General Physician and Instructor Dept. of Physiology, Learning and Memory Lab. Dept. and Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran