مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هشتم، شماره اول، بهار 1388، 11-18
کالمودولین اثرات ضددردی مورفین را در موش‌های صحرایی تقویت می‌کند
افروز آذرانگی، علی شمسی‌زاده، حسین سیدی، علی غلام‌رضا سپهی، محمد الله توکلی
محمد ابودهیم رضوی‌پور، محمد محمودی
دریافت مقاله: 8/7/1386، پذیرش مقاله: 8/7/1387، دریافت اصلاح: 14/11/1387، تاریخ اصلاح: 8/12/1387
چکیده
زمینه و هدف: کالمودولین در مسیر سینالگی روابطی مربوط به گیرنده‌های آپوپتیک دخیل است. هدف این مطالعه بررسی اثر ترکیبی مزمن درون بطنی داروی W-7 که یک مهارکننده خاصیت پروتئز کالمودولین است بر ایجاد تحمل به مورفین بوده است.
مواد و روش‌ها: این مطالعه تجربی از 75 موش صحرایی بر زنده در استان وارزین با وزن تقریبی 250-200 گرم استفاده شد. ابتدا با استفاده از دستگاه استرتوتکسک و مختصات بطنی طرفی مغز در اساس اطلس پاکسینوس و انسون کانویل‌گذاری جهت حیوان انجام شد و یک هفته پس از بهبودی به حیوان فرست داده شد. حیوانات مورفین را به صورت داخل صافی با مقادیر روزانه 15 میلی‌گرم بر کیلوگرم به مدت 8 روز داروی کردند. ایجاد تحمل به اثرات ضددردی در روزهای 1، 3 و 8 ارزیابی شد. داروی W-7 به صورت درون بطنی با مقادیر Tail-Flick مورفین با آزمون آزمونی کالریک در روزهای 1، 3 و 8 ارزیابی شد. داروی W-7 بعد از آنجام آزمون تجویز گردید.
نتیجه‌گیری: ترکیب مورفین به مدت 8 روز سبب ایجاد تحمل به اثرات ضددردی مورفین شد. تجویز داروی W-7 به صورت روژهای داروی 3/25 میکرومول به ارزی هر موش تنوانست مانع برز تحریر بروز اثرات ضددردی مورفین شود و به مقدار بالاتر 3/5 و 1 میکرومول به ارزی هر موش به طور مبنا داری سپری کرد. در ایجاد تحمل شد.
تاثیر ترکیب داخل بطنی داروی W-7 به صورت مزمن موجب جلوگیری از بروز تحمل به اثرات ضددردی مورفین گردید. نتایج حاضر نشان دهنده نقش پروتئز کالمودولین و مسیرهای وابسته به آن در روند ایجاد تحمل به اثرات ضددردی مورفین در بی تجویز مکرر این داروست.
واژه‌های کلیدی: کالمودولین، تحمل، مورفین، W-7

1- پژوهش عمومی، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی کرمان
2- (نوبت‌سازی مسئول) استادیار گروه آموزشی فیزیولوژی و فارماکولوژی دانشکده پزشکی، دانشگاه علوم پزشکی رفسنجان
ashamsi@rums.ac.ir
تلفن: 391-202-202-00، فاکس: 391-202-00، پست الکترونیکی: 
3- استادیار مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی کرمان
4- استادیار گروه آموزشی فیزیولوژی و فارماکولوژی دانشکده پزشکی، دانشگاه علوم پزشکی کرمان
5- استادیار گروه آموزشی فیزیولوژی و فارماکولوژی دانشکده پزشکی، دانشگاه علوم پزشکی رفسنجان
6- دانشیار گروه آموزشی بیوشیمی دانشکده پزشکی، دانشگاه علوم پزشکی رفسنجان
مقدمه
ضررده‌های اوبوپیدی از جمله مورفین به طور گسترده در کنار داروهای مسکن منجمد استفاده می‌شوند. جلوگیری از ضررده‌های اوبوپیدی ممکن است به کاهش این ضررده‌ها کمک کند. در این مطالعه، به بررسی اثرات مورفین و گریپیدن به عنوان دو بارگیر کننده اوبوپیدی می‌پردازیم.

کمال‌دوشیون اندMEMS از جمله مورفین به طور جیران جلوگیری از اثرات ضررده‌های اوبوپیدی با استفاده از مون‌گلیپاز می‌تواند کمک کند. در این مطالعه به بررسی اثرات مورفین و گریپیدن به عنوان دو بارگیر کننده اوبوپیدی می‌پردازیم.

مواد و روش‌ها

بحث: این مطالعه تحقیقی (experimental) است.

درمان محیط: در این مطالعه، مورفین و گریپیدن به عنوان دو بارگیر کننده اوبوپیدی می‌پردازیم. مورفین به عنوان یکی از داروهای ضد دردی در آزمون‌های فیزیولوژیکی و شناسایی وابستگی به داروهای ضد دردی درآمده است.

مکانیسم عمل: در این مطالعه، مورفین و گریپیدن به عنوان دو بارگیر کننده اوبوپیدی می‌پردازیم. مورفین به عنوان یکی از داروهای ضد دردی در آزمون‌های فیزیولوژیکی و شناسایی وابستگی به داروهای ضد دردی درآمده است.

در نهایت، مورفین و گریپیدن به عنوان دو بارگیر کننده اوبوپیدی می‌پردازیم.
افروز آذریگان و همکاران

کاهش میزان حرارت در یک تریک 7-W در بین جانبي مغز این نتیجه گرفته شد که با استفاده از مخلوط زیلانین (5 میلی‌گرم بر کیلوگرم و کاتین 40 میلی‌گرم بر کیلوگرم) و سپس سر حیوان در دستگاه استرتنوکاکس ناتی و یک برش طولی از قسمت ابتدا به طرف انتهای جسمه داده شد. استرتنوکاکس بر اساس اطلاع پاسکینوس و وانسن بر روی مختصات بطن طرفی مغز (15 میلی‌متر به سمت عقب نسبت به برجگرما، 1/15 میلی‌متر در سمت چپ خط وسط و 1/3 میلی‌متر از سطح سخت‌شانه جسمه) تنظیم شد. بک کانال نشانگی در یک ترنیک 7-W، می‌تواند یک سه‌بخشی کانال‌گذاری شده مورد آزمایش قرار گرفته و هر گروه شامل 8 سر حیوان بود.

گروه‌های مورد آزمایش: در این تحقیق 8 گروه میوه صحراهای کانال‌گذاری شده مورد آزمایش قرار گرفتند و هر گروه شامل 8 سر حیوان بود.

1. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

2. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

3. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

4. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

5. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

6. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

7. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

8. موش‌های دارای دارایی‌کننده سرم قیزیولوزیک داخل صحرا (MPE) میزان تأثیر∈

اندازه‌گیری و تحت عنوان زمان تأخیری در گروه درمانی (experimental latency) به 15 ثانیه تعیین شد تا از آسیب باتفین جلوگیری شود [15]. هدایت اثر ضددردی (MPE maximal possible effect) تأخیری پایه و درمانی بر اساس فرمول زیر بصورت درصد

BIAN SHD:

$$MPE = \frac{\text{experimental latency - basal latency}}{15-\text{basal latency}} \times 100$$

روش ایجاد تحمیل به مورفین: برای این تحقیق، مورفین به صورت داخل صفاوی یک توئیت در روز به میزان 15 میلی‌گرم بر کیلوگرم به مدت 8 روز به حیوانات تریک کرد. پسپری تحمیل خاصیت ضددردی این دوز از مورفین در روزهای 1، 3، 5 و 8 با استفاده از تست Tail-Flick سنجیده شد. داروی W-7 (0.1 میلی‌متر به سمت عقب نسبت به برجگرما، 1/15 میلی‌متر در سمت چپ خط وسط و 1/3 میلی‌متر از سطح سخت‌شانه جسمه) تنظیم شد. بک کانال نشانگی در یک ترنیک 7-W، می‌تواند یک سه‌بخشی کانال‌گذاری شده مورد آزمایش قرار گرفتند و هر گروه شامل 8 سر حیوان بود.

نتایج: در تحقیق 8 گروه میوه صحراهای کانال‌گذاری شده مورد آزمایش قرار گرفتند و هر گروه شامل 8 سر حیوان بود. در جهت بهبود فرصت داده شد.
ضددردی مورفین بررسی نشده است. همانطور که در نمودار 1 از دیده می‌شود در موشهای دریافت کننده مورفین در برابر مصرف مورفین در فاصله مصرف و مقادیر مختلف W-7 (0.5 و 1 میکرومول به ارزیابی اثر سطحی و به مدت 8 روز، روش آماری: داده‌ها به صورت میانگین با انحراف معیار نشان داده شدند. اختلاف حداکثر اثر ضددردی در موشهای مختلف و در زمان‌های مختلف با اثباتی از آزمون آناالیز واریانس دو عاملی بررسی شد. از آزمون آناالیز واریانس تکراری برای تجزیه و تحلیل داده‌ها در زمان‌های مختلف در یک گروه آزمایشی استفاده شد. تاکمیل داده‌ها به معنی‌دار تلقی گردید.

نتایج
تجویز داخل صافی مورفین (1 میلی‌گرم بر کیلوگرم) با مدت 8 روز سبب ایجاد تحمیل به اثرات ضددردی مورفین شد به طوری که میزان و هشتم به اثرات ضددردی موشهای W-7 در هر موشهای مصرف دریافت کننده مورد ارزیابی قرار گرفت. میزان W-7 روز هشتم از دریافت هر موشهای مصرف دریافت کننده W-7 (مقدار 0.5 میکرومول به ارزیابی اثر سطحی و به مدت 8 روز) (بتربی: 0.05) در آزمایش معنی‌داری داشت. (نمودار 1).

نمودار 1- ایجاد تحمیل به اثرات ضددردی مورفین در یک تجویز مصرف (0.5 و 1 میکرومول) به مدت 8 روز در موشهای سنجش. مصرف (0.5 و 1 میکرومول) به مدت 8 روز در موشهای سنجش.

در این بخش از مطالعه ابتدا تأثیر تجویز داخل سطحی (به عنوان داخل سطحی W-7) بر ایجاد تحمیل به اثرات ...
الف) افزایش نشان داد. نتایج مطالعه حاضر می‌تواند نشان‌دهنده این مطلب باشد که کالومدولین و مسیرهای وابسته به آن در ارتباط تجمیع هرات مضری و نقص دارند که این مسئله با گزارش قطع‌سایر حیاتی‌محققین هم‌خوانی دارد [18، 19، 20]، به عوامل مالی نشان داده شده است که ارتباط داخلی بین مها می‌باشد. در موش صحرایی می‌گردد [9].

محققین گزارش کردند که تجربیات مزارع تبلیغات این گروه‌ها موجب افزایش کلسم‌های سلولی می‌شود [10، 11] که این امر سبب چند کالومدولین از غشاء سلول می‌گردد [8]. افزایش میزان کالومدولین موجود در سیبزمر، انتقال کالومدولین را به درون هسته سلول یافته می‌کند [21]. کالومدولین در هسته بروز (Expression) یکسری از من‌ها را تغییر می‌دهد که این تغییرات در بررسی عوارض ناشی از تجویز مزارع تبلیغاتی گروه‌ها از جمله ارتباط تجمیع می‌تواند [22، 23]. علاوه بر آن کالومدولین از طریق فسفولیزیون پروتئین‌های G-بروتین‌های (G-proteins) در هزینه باعث تظاهر عضله‌های مولکولی-ایالتی (phosducin-like) می‌شود که این بروتهای G-بروتین‌های پروتئین‌های پروتئین‌های از مسیرهای سیگنالگی مربوط به گروه‌های اپیدیمی نقص دارند [24] از زیر دیگر نشان داده شده است که در اثر تجویز مزارع مورفین، محتوای کالومدولین مغز موش افزایش می‌یابد [11، 25، 26، 27، 22]، همچنین افزایش فعالیت‌های کالومدولین با قسمت‌های مختلف مغز از جمله استرینوس، مغز مالیک، قشر مخ و تالاموس در اثر تجویز مورفین گزارش شده است [11، 25-26].

نتیجه‌گیری

مطالعه حاضر نشان داد که میزان مفیدایت کالومدولین در مغز موش، ایجاد تحمیل اثر ضددردی، مانند طور که در مورد ۲ دیده می‌شود، روی MPE، پنج و هشتم در گروه دریافت کننده داروی W-7 (مقدار ۱ میکرومول به ازای هر موش) به همراه مورفین داخل صافی به ترتیب ۸۵ و ۵۸/۷ بود که در مقایسه با میزان روز پنج و هشتم در گروه مورفین به همراه MPE به ترتیب ۲۰ و ۲۰/۷ افزایش معنی‌داری را نشان می‌دهد (۵/۰۰). این نتایج نشان می‌دهد که میزان روی H-8 در مورد گروه دریافت کننده داروی W-7 (مقدار ۱ میکرومول به ازای هر موش) به همراه MPE از روز نخست در آن گروهها قابل معنی‌داری دارد، به‌دلیل می‌کمک می‌کند تجویز داخل ناحیه حذف کننده MPE (مقدار ۱ میکرومول به ازای هر موش) به همراه مورفین داخل صافی می‌کند به اثر ضددردی مورفین را مهار می‌کند (مورد ۲).

بحث

این مطالعه با منظور بررسی اثر موفقیت نخاعی پروتئین‌های کالومدولین از طریق تجویز داخل پتی مهارت‌کننده اختصاصی این پروتئین‌ها (داروی W-7 بر پروز نتایج در اثر شرکت در مورد اثر ضددردی مورفین صورت گرفت. نتایج حاصل از این بررسی نشان داد که اثرات داخلی در مورد ۱۷ W-7 به صورت مزمن موجب جلوگیری از بروز نتایج در اثر شرکت در مورد اثر ضددردی مورفین می‌گردد به طوری که میزان حاکم اثر ضددردی (MPE) روز پنج و هشتم در گروه دریافت کننده داروی W-7 (مقدار ۱ میکرومول به ازای هر موش) به همراه مورفین به صورت معنی‌داری نسبت به گروه مورفین ب
موزفین را مهار می‌کند. با این حال نظر می‌رسد که
تغییرات مشاهده شده در محیط و میزان فعالیت
کالمودولین در پی تجویز موزفین احتمالاً در ایجاد
عوارضی همچون ایجاد تحرک به موزفین نش دارد.

References

[1] Koob GF. Drugs of abuse: anatomy, pharmacology and
function of reward pathways. Trends Pharmacol Sci,


trifluoperazine attenuates the development and
expression of morphine-induced conditioned place


dynamic changes in the subcellular distribution of
196-9.

antagonists control calmodulin distribution in
55-63.

G protein-coupling domain of opioid receptors. J Biol

[9] Fan GH, Wang LZ, Qiu HC, Ma L, Pei G. Inhibition of
calcium/calmodulin-dependent protein kinase II in rat
hippocampus attenuates morphine tolerance and

antinoceptive tolerance by acute spinal inhibition of
Ca(2+)/calmodulin-dependent protein kinase II. Eur J

Sanchez-Blazquez P, Garzon J. RGS14 prevents
morphine from internalizing Mu-opioid receptors in
2558-71.

[12] Bonnet KA, Engelberg L, Gusik SA. Calmodulin
increases in selective brain regions with opioid

[13] Hoskins B, Ho IK, Meydreech EF. Effects of aging and
morphine administration on calmodulin and calmodulin-
regulated enzymes in striata of mice. J Neurochem, 1985;
44(4): 1069-73.

[14] Johnson MA, Tsutsui K, Fraley GS. Rat RFamide-
related peptide-3 stimulates GH secretion, inhibits LH
secretion, and has variable effects on sex behavior in the

[15] Esmaeili Mahani S, Vahedi S, Motamed F,
Pourshanazari A, Khaksari M, Ahmadiani A. Nifedipine
potentiates antinociceptive effects of morphine in rats by 
decreasing hypothalamic pituitary adrenal axis activity. 


Calmodulin Potentiates the Antinociceptive Effects of Morphine in Rats

A. Azarang1, A. Shamsizadeh2, V. Sheibani1, S. Azizollahi1, Gh.R. Sepehri1, M. Allahtavakoli3, M.E. Rezvani2, M. Mahmoodi4

Received: 28/06/08  Sent for Revision: 04/02/09  Received Revised Manuscript: 14/02/09  Accepted: 16/03/09

Background and Objectives: Calmodulin is involved in signaling pathways of opioid receptors. The present study was performed to determine the effect of chronic intracerebroventricular (ICV) administration of W-7, a specific calmodulin inhibitor, on the development of morphine tolerance.

Materials and Methods: This experimental study was carried out on 75 male wistar rats weighing 200-250 g. The cannula was placed in the lateral ventricle of rat's brain according to the Paxinos and Watson atlas using the stereotaxic instrument. Rats were allowed a 7 day recovery period after the surgery for implantation of the cannula. Morphine was injected intraperitoneally based on a daily dose of 15mg/kg for 8 days. The development of tolerance to analgesic effects of morphine was measured on days 1, 3, 5 and 8 by Tail-Flick test. W-7 (0.25, 0.5 and 1micromol/rat) was injected as ICV each day 10 minutes prior the morphine administration. On days that Tail-Flick test was performed W-7 was administered after the test.

Results: Chronic administration of morphine alone for 8 days induced tolerance to its antinociceptive effect. ICV administration of W-7 in dose of 0.5 and 1 micromol/rat could prevent the development of morphine tolerance. However administration of W-7 in dose of 0.25 micromol/rat could not prevent the development of morphine tolerance

Conclusion: Chronic ICV administration of W-7 (a specific calmodulin inhibitor) inhibited the development of morphine tolerance. These results indicate that calmodulin and calmodulin- dependent pathways may play a role in the morphine tolerance process.

Key words: Calmodulin, Tolerance, Morphine, W-7

Funding: This study was supported by Kerman neuroscience research center.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Kerman Neuroscience Research Center, approved the study.

1- General Physician, Neuroscience Research Center, University of Medical Sciences, Kerman, Iran
2- Assistant Prof., Dept. of Physiology and Pharmacology, Medical School, University of Medical Sciences, Rafsanjan, Iran
(Corresponding Author) Tel: (0391) 5234003, Fax: (0391) 5225902, E-mail: alishamsy@gmail.com
3- Assistant Prof., Neuroscience Research Center, University of Medical Sciences, Kerman, Iran
4- Prof., Dept. of Physiology and Pharmacology, Medical School, University of Medical Sciences, Kerman, Iran
5- Assistant Prof., Dept. of Physiology and Pharmacology, Medical School, University of Medical Sciences, Rafsanjan, Iran
6- Associate Prof., Dept. of Biochemistry, University of Medical Sciences, Rafsanjan, Iran