بررسی اثر آنتی اکسیدانی چهارگونه گیاهی زولنگ، چوجاخ، تلکا و خرمدی در مدل پرون تن

سیدمحمد نبوی ۱، سیدفضل نبوی ۲، محمدعلی ابراهیمزاده ۳، بهمن اسلامی ۴

چکیده
زمینه و هدف: تلاک، خرمدی، چوجاخ و زولنگ از جمله گیاهان بومی ناحیه شمال ایران می‌باشند که چابک‌ها و یزو‌های در سبد غذایی مردم منطقه دارند. مبوی خرمدی و تلاک مصرف خوراکی دارد و برگ چوجاخ و زولنگ نیز به عنوان سبزی در تهیه غذاهای محلی به کار می‌رود. هدف این مطالعه سنگین آنتی اکسیدانی عصاره مانانی با بهره‌گری از شش روش منفی‌داتری به ترتیب زیر است.

مواد و روش‌ها: در این مطالعه تجزیه آنتی‌اکسیدانی با بهره‌گری از روشهای به دام اندازی رادرکال آزاد دی‌فنیل‌پیکریل‌هیدرازیل، نتری‌باکسی‌آنزیم، لیپووکست نتری‌باکسی، لیپوونتیک اسید، و نتری‌باکسی‌آنزیم شیمیایی، و شیمیایی که انتقال گذار الماسگفتی و سوپرکسید با بهره‌گری از روش زنگنسنجی فولن سیوکاتنیو بوده است.

یافته‌ها: غلظت ماهر / در روش به دام اندازی رادرکال دی‌فنیل‌پیکریل‌هیدرازیل بین‌تریپ تیپ‌بود: عصاره چوجاخ> عصاره روزنگ > عصاره تلکا > عصاره خرمدی > عصاره گیاهی چوجاخ و زولنگ، فعالیت بین‌تریپ تیپ درصد بیشتری به دام اندازی نتری‌باکسی‌آنزیم و مه‌چینی در مدل‌های انتقال از خود نشان دادند که قابل مقایسه با ویتامین ق بوده است.

نتیجه‌گیری: عصاره‌های مانانی گیاه زولنگ و برگ چوجاخ فعالیت بین‌تریپ را نسبت به سایر نمونه‌های مورد مطالعه نشان دادند که احتمالاً ناشی از محتوای بالای فنل و فلناک‌هیدروکسی موجود در آن‌ها بوده است.

واژه‌های کلیدی: آنتی‌اکسیدان، چوجاخ، زولنگ، تلکا، خرمدی

1- محقق، مرکز تحقیقات علوم دارویی، دانشگاه علوم پزشکی مازندران
2- نویسنده مسئول دانشگاه گروه آموزشی علوم دارویی، مرکز تحقیقات علوم دارویی، دانشگاه علوم پزشکی مازندران
zedeh20@yahoo.com
تلفن: ۰۹۱۲۳۴۵۶۷۸۹۰، دورگاه: ۰۹۱۲۳۴۵۶۷۸۹۰، پست الکترونیکی: zedeh20@yahoo.com
3- استادیار گروه آموزشی سیستماتیک گیاهی، دانشگاه آزاد اسلامی واحد چالوس
مقدمه

صرف آنتی-کسیدان‌های طبیعی همچون میوه‌ها و سبزی‌های موجود در زمین غذایی، نقش مناسبی را در حفظ وضعيت سلامت بدن انسان ایفا می‌کند [1]. تولید منظم و کنترل شده اکسیدنز فعال موجب پایداری هموستاتیک اکسایش-کاهش می‌گردد که این امری ضروری برای حفظ سلامت فیزیولوژیکی ارگانیسم‌های زندگی است [2]. استرس اکسیدان‌هایی که از عدم توانایی تولید اکسیدنز فعال و خنثی کردن شدن آن توسط سازوکار‌های آنتی-کسیدانی، عامل ایجاد بیماری‌ها از بیماری‌های نظیر بروز، اتوئس سرطان و بی‌نظیری‌های نورون‌زا و آگرامی، باربپلیس و هیپانتیگمون سی باشد [3]. بی‌بیان استفاده از آنتی-کسیدان‌های طبیعی برای جلوگیری از افرادی که امکان استرس-زا ناشی از تولید بیش از حد اکسیدنز، فعال و پیشگیری از ابتلا به بیماری‌های فقیر، مهم و حیاتی است [4]. تحقیقات آنتی-کسیدانی به عنوان پارامتری برای سنگین اثرات مواد غذایی مختلف، گیاهان و ترکیبات آنها به طور گسترده‌ای مورد استفاده قرار می‌گیرد. به تازگی و پس از ابتلای سرطان، بودن آنتی-کسیدان‌های سنتزی [5] جستجو برای پایان آنتی-کسیدان‌های طبیعی اهمیت سیاری یافته است. به نظر می‌رسد که در فاصله‌ای از اکسیدنز فعالیت آنتی-کسیدان‌های طبیعی همچون سیب زاهی بهره‌مند است. این محدوده گیاهان، آنتی-کسیدان‌های قوی در محیط برون تن هستند [6]. فلزات و سایر مواد غذایی نیز که ترکیبات مغذی نیستند ولی تأثیر مناسب بر حفظ سلامتی بدن دارند، پژوهش‌های بسیار زیادی درباره فعالیت آنتی-کسیدانی به دانش‌خواری رادابکل از ایادهای ضد سرطانی و ضد حجم کاهش ترکیبات صورت گرفته است. مهم‌ترین خصوصیات آنتی-کسیدان‌های طبیعی، نقش آنها در پیشگیری از بیماری‌های قلبی عروقی است [7].

جدی بیوقتی عضوی از خانواده جنگل‌های اکسیدنز است که...
دریغ برای سنجش میزان فلورونده، از معرف الومونیم کلرید استفاده شد. به بیلی می‌توان از هر عصاره 10 میلی گرم کلرید لیزر، 15 میلیولی میزان مدلار، 10 میلیولی میزان کراید 1٪ در انتقال 20 میلیولی استاند پتیمک مولار 2/8 میلیولی آب مصرف اضافه شد. جذب مخلوط نیم ساعت بعد در طول موج 430 نانومتر در مقابل بلنک قرنیش داد. کورسیون به عنوان استاندارد برای رسم منحنی کالیبراسیون استفاده شد. میزان فلورونده بر اساس میزان معادل میلی گرم کورسیون در گرم عصاره گزارش گردید. [14]. آزمایشات 3 بار تکرار و میانگین آن کار گرفت.

فعالتی به داماندازی رادیکال آزاد: رادیکال پایدار دی فنیل بیکریل هیدرایزیل برای تعیین فعالیت به داماندازی رادیکال آزاد به کار رفت [16]. طول های مختلف از هر عصاره با هن جرم خود از مخلوط منحنی دی فنیل بیکریل هیدرایزیل (100 میکرو مولار) مخلوط شده و پس از هم دهنده بیش از 15 دقیقه در تاریک در انکوبه شد. جذب مخلوط در طول موج 417 نانومتر در مقابل بلنک قرنیش داد. آزمایشات 3 بار تکرار شد و میانگین آن کار گرفت. ترکیبات نفنی در انتهای اکسیداسیون با اکسیداسیون طول دست آماد و بالا برده، کورسیون و بتوین هیدروکسی‌آنیسول به عنوان مثبت براز می‌بایسته و با کار گرفته شد . بروز قدرت احیاء کندگی: احیاء آهن (III) اغلب به عنوان معمول برای قابلیت الکترون دهی به کار می‌پردازد. این عمل به عنوان بای تحقیق و کارشناسی در فاصله‌ای از اکسیداسیون ترکیبات نفنی تکثیر می‌دهد [15]. انتقال در بین انجام شد

ویشناسی، سولفیمیل آمید، نفتیلین یا امین‌های گزه‌های هیدروکسی امید، این باعث ایجاد استیک است. هیدروکسی‌کراک و کلرید آهن (III) ترکیبات فلورونده و حل‌ها نیز با خلوص از امین‌ها به خود انجام گرفته‌اند. خریداری شدند.

جمع آوری گیاه و عصاره‌گیری: مطالعه حاضر به شکل تجربی انجام شد. به دنبال منظور اندام هیپری گیاه زالت و برگ گیاه جوخار قیل از مرحله گل‌دهی در فروردین 1368 و میوه تازه و خرمندی در اوایل پاییز 1368 از منطقه خزرن‌آباد ساری (روستا بهبود) به تأمین دکتر بهمن اسلامی تهیه و جمع آوری شد. به شکل گیاهان در سایه در مجاورت هوا خشک و نسبتاً پودری شدند. به منظور عصاره‌گیری از منحنی استفاده شد. 20 گرم از پودر خشک شده گیاه به 2 لیتر مخلوط شده و پس از 34 ساعت صاف گردید. عمل استخراج در هور مورد 3 بار تکرار شد. حل‌ول در خلاء تبخیر شدند.

اندازه‌گیری محتملی نام فنلی و فلورونده‌های عصاره‌ها: محتملی نام فنلی با استفاده از واکنش‌گر فولین- سپاکالیو اندازه‌گیری شد. 5/0 میلی لیتر از هر عصاره 100 میلی گرم بر میلی لیتر و کنکرگ فولین- سپاکالیو 40 نانومتر مخلوط شده و پس از 5 دقیقه، 2 میلی لیتر از محلول 25 گرم بر میلی لیتر کربنات سدیم به آن اضافه شد. جذب مخلوط 2 ساعت بعد در طول موج 430 Double Beam نانومتر توسط دستگاه استپکنیو فولنتورم (Perkin Elmer, USA) اسیدگالیک به عنوان استاندارد برای رسم منحنی کالیبراسیون به کار رفت. محتملی نام فنلی بر اساس میزان معادل میلی گرم گالیک اسید در گرم عصاره گزارش شد [12]. آزمایشات 3 بار تکرار شد و میانگین آن کار گرفت.
برای یافتن منابع آمن بر این مسئله بوته که سدایی بزودرس بروز
پروپاسید در محلول‌های آبی در pH
فیوزیولوژیکا به
اهستگی نیتریکاکسید تولید نموده که با آکسیژن محتوی
وارد واکنش شده و به انرژی کل نیتریکاکسید
نیتریکاکسید تولید شده در حضور واکنشگر گازهای مورد
سنجد قرار می‌گیرد. به دانش‌نوازی نیتریکاکسید با رقابت
نمونه با آکسیژن موجب کاهش تولید بین نیتریکاکسید
شد. به این منظور به نیتریکاکسید با آب مزده
نیتریکاکسید با آب مزده
بین نیتریکاکسید با آب مزه
شلاله‌کندگی آهن با روش Dinz انجام شد [19]. به 5 میلی‌گرم بر میلی‌لیتر در 3 میلی‌لیتر اتانول 96 درجه, 1/2 میلی‌لیتر محلول اسید لیتیوم‌نیکرلایک (151/2) حجمی/حجمی) در اتانول مطلق اضافه گردید. سپس 8 میلی‌لیتر بیاف سفانه 1/2 مولار (pH=7-3) و 2/3 میلی‌لیتر آب مقتصر به محلول اضافه شد. مجموعه در لوله درب‌دار قرار داده شد و در تاریکی در دمای 40 درجه نگهداری گردید. به 15 میلی‌لیتر از این محلول 0/8 میلی‌لیتر محلول آمونیوم نیو سیانات 30 درصد زنی/حجمی, اضافه شد. 3 دقیقه پس از آزاد شدن اتانول محلول کریت آهن (II) (200 میلی‌گرم در لوله نانومتر در مقابل بالا کرید قرار شده و بر اساس فعالیت آنتی‌کسیدانی به شکل درصد مهار یا بدین قرار فرمول زیر محاسبه شد:

$$
\text{محاسبه شد}$$

عمل سنگش 24 ساعت. نتایج در جدول بیان شده به حداکثر مقدار خود بر اساس انجام یافته‌ها بر اساس اطلاعات به دست آمده، غلظت مهار 50/0 درصد‌ها محاسبه شد. ویتامین به نوبه هیدروکسی آنیسول به عنوان شاهد مثبت برای مقایسه استفاده شد.

به دامان‌داری رادیکال‌های هیدروژن‌برکسید توانایی عصاره‌ها در دامان‌داری رادیکال‌های هیدروژن‌برکسید بر طبق روش Ruch تعیین شد. [21] محلول 40 میلی‌میلی‌مولار (pH=7/4) تهیه گردید. غلظت هیدروژن‌برکسید به استاندارد محلول میزان جذب در طول موج 330 نانومتر اندازه‌گیری شد. عصاره‌ها (در غلظت 1-10 میلی‌گرم بر میلی‌لیتر) در مشابه‌های به 15 میلی‌لیتر محلول 40 میلی‌مولار هیدروژن‌برکسید اضافه می‌شود. پس از 10 دقیقه میزان جذب در طول موج 330 قرار گرفت. [22] به 1 میلی‌لیتر از هر عصاره (با غلظت Ethylene Diamine) EDTA محاسبه گردید. به عنوان کنترل کار و فعالیت (Tetraacetic Acid) شلاله‌کندگی آهن بر حسب آکسی و آلین در Gzm عصاره بیان شد.

فعالیت آنتی‌کسیدانی FTC (Ferri Thiocy Anate) FTC چربی‌های غنی از اسیدهای جرب غیر اشاعه‌سوز که آنها را مستعد شرکت در راه اندازی آکسیدانی می‌نمایند. در این خصوص به ویژه می‌توان به اسید لیتیومیک و اسید آراسیدنوکین اشاره نمود که هدف برکسیده شدن چربی‌ها می‌باشد [20]. مهار برکسیده شدن چربی‌ها به کمک آنتی‌کسیدان‌ها ممکن است به صورت فعالیت به دامان‌داری رادیکال‌های آزاد باشد. بیون سوپر برکسید به طور غیرمستقیم افزایش برکسیده شدن چربی‌ها است زیرا آنیون سوپر برکسید به عنوان یک سریکسیون نورال و رادیکال هیدروکسی عمل می‌کند. رادیکال‌های هیدروکسی موجب کاهش انتی‌کسیدان‌های هیدروژن از غشاء چربی‌ها می‌گردد. این انواع منجر به افزایش شدن چربی‌ها می‌شود. فعالیت آنتی‌کسیدانی عصاره‌ها در مقابل اسیدنوکین اسیدلینولیک با روش FTC مورد بررسی قرار گرفت [14]. به 1 میلی‌لیتر از هر عصاره (با غلظت
فعالیت به دام اندامی رادیکال آزاد: مدل به دام اندامی رادیکال پایدار در فنیل به پیکرل هیدروژنی به طور مستقیم برای هیدروژن، پایداری ایجاد مشاهده نمی‌کند. در این مدل، کنترل می‌باشد که هیچ‌گونه مشخصی در مورد فعالیت به دام اندامی رادیکال در تمام عضوی از افزایش ظرفیت، افزایش می‌باشد. در این مدل، کنترل می‌باشد که هیچ‌گونه مشخصی در مورد فعالیت به دام اندامی رادیکال در تمام عضوی از افزایش ظرفیت، افزایش می‌باشد.

میزان با سرعت لیزر بیشتری از جناح افزایش دارد. منفی با سرعت لیزر بیشتری از جناح افزایش دارد. "چهارم" نتایج

نتایج

بحث عصاره از قطعیت و فلائتونید: محصولات نام فنی با روش فولئین سیوکالسیتی به صورت گلیوالان گالیکسیسپس در گرم عصاره بر اساس معادله خط منحنی استفاده می‌شود. شد (جدول 1). محصولات فلائتونید نیز به صورت گلیوالان می‌گم کورنتین در گرم پودر عصاره‌ها گزارش شد (جدول 1). عصاره زولگ و طور قابل ملاحظه‌ای دارای مقادیر بالاتری از فنل نام و فلائتونید نسبت به سایر عصاره‌ها بود. فنل نام و ترکیبات گلیونلی، مانند فلائتونید، به طور گسترده در محصولات غذایی بافت می‌شوند و نشان داده شده که فعالیت انتی‌اسیدی قابل ملاحظه‌ای دارد [22]. میزان فنل نام و فلائتونید در این بحث به دست آمده که فعالیت مشابه با همکاران را توجه نماید.

جدول 1

<table>
<thead>
<tr>
<th>عصاره‌ها</th>
<th>فنل نام</th>
<th>فلائتونید</th>
</tr>
</thead>
<tbody>
<tr>
<td>عصاره‌های زولگ</td>
<td>افزایش</td>
<td>افزایش</td>
</tr>
<tr>
<td>عصاره‌های زولگ و فلائتونید</td>
<td>افزایش</td>
<td>افزایش</td>
</tr>
</tbody>
</table>

ن拙ال‌های تحقیق

جدول 1

<table>
<thead>
<tr>
<th>عصاره‌ها</th>
<th>فنل نام</th>
<th>فلائتونید</th>
</tr>
</thead>
<tbody>
<tr>
<td>عصاره‌های زولگ</td>
<td>افزایش</td>
<td>افزایش</td>
</tr>
<tr>
<td>عصاره‌های زولگ و فلائتونید</td>
<td>افزایش</td>
<td>افزایش</td>
</tr>
</tbody>
</table>

مجله دانشگاه علوم پزشکی رفسنجان

دوره 6 شماره 2 سال 1388
کمک اهداف الکترون موجود با کاهش حداکثری زنجیره‌ای می‌گردد.

نتایج
میزان فعالیت شلاته کندگی آهن (II) نشان داد که تعداد عصاره فعالیت ضعیف اتصال به آهن را دارا می‌باشد. غلظت میانگین ۵۰٪ برای شلاته کندگی آهن (II) برای عصاره‌های متناظر خرمشه و تلکا به‌کار می‌رفت.

جدول ۱- اثر به دامنداری تیرپیک اکسید و دی‌تی‌سی کریل هیدروژن‌پراکسید (DPPH) و نیز محتوای تام فنی و فلانونولید (IC_{50}) عصاره‌ها

| محتوای فلانونولید | محتوای تام فنی | فعالیت به دامنداری | اثر به دامنداری تیرپیک اکسید | نامنه | میوه خرمشه | میوه تلکا | انداد هوایی زولنک | پرک چوجاح | کونترستین | بیوتیل هیدروکسی آنتسول
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2/5 ± 1/1</td>
<td>1/10 ± 9/10</td>
<td>2/3 ± 3/3</td>
<td>3/0 ± 3/0</td>
<td>1/17</td>
<td>3/0 ± 3/0</td>
<td>7/0 ± 7/0</td>
<td>1/10 ± 1/1</td>
<td>2/2 ± 2/2</td>
<td>0/10 ± 0/10</td>
<td>1/10 ± 1/1</td>
</tr>
<tr>
<td>3/0 ± 3/0</td>
<td>1/10 ± 9/10</td>
<td>2/3 ± 3/3</td>
<td>3/0 ± 3/0</td>
<td>1/17</td>
<td>3/0 ± 3/0</td>
<td>7/0 ± 7/0</td>
<td>1/10 ± 1/1</td>
<td>2/2 ± 2/2</td>
<td>0/10 ± 0/10</td>
<td>1/10 ± 1/1</td>
</tr>
<tr>
<td>1/10 ± 1/1</td>
<td>3/0 ± 3/0</td>
<td>2/3 ± 3/3</td>
<td>3/0 ± 3/0</td>
<td>1/17</td>
<td>3/0 ± 3/0</td>
<td>7/0 ± 7/0</td>
<td>1/10 ± 1/1</td>
<td>2/2 ± 2/2</td>
<td>0/10 ± 0/10</td>
<td>1/10 ± 1/1</td>
</tr>
</tbody>
</table>

فعالیت آنتی کسیدانی (آنتی آدامی) عصاره‌ها؛ نمودار ۲

فعالیت آنتی کسیدانی عصاره‌ها را در غلظت ۵۰/۰ میلی گرم در میلی لیتر ناشان می‌ده. وکنش مهار براکسیداسیون عصاره چوجاح آراش ۹۳٪ در ساعت ۲۴ (تای ۹۹٪ در ساعت ۷۲) به دست آمد. عصاره خرمشه، تلکا و زولنک فعالیت آنتی کسیدانی ضعیفی را از خود نشان دادند. اختلاف معنی‌داری بین فعالیت این عصاره‌ها وجود داشت. این مطالعه جهت بررسی متقابلیت اکسیداسیون از خود نشان داد (۵/۵۰۴۳>۰/۰۱). عصاره چوجاح کومپرسی همانند ویژگی‌های در زمان‌های مختلف انگالت از خود نشان داد.
ثبت

بر اساس نتایج به دست آمده میزان فنل و فلاونئید در گیاه زولنگ بیش از سایر عصاره‌های مورد آزمایش بود. رادیکال‌های بیکریلیک هیدرژنیک یک رادیکال آزاد با اتم مرکزی نیتروژن دارد که به‌عنوان یک واکنش نیک از کلرینهو گرفتن هیدرژون می‌تواند به‌عنوان یک واکنش نیک از کلرینهو گرفتن هیدرژون با الکترون رنگ آن از ارغوانی به زرد تبدیل می‌شود. ترکیباتی که چنین قابلیتی دارند به عنوان انتی اکسیدان مطرح می‌گردد. در این روش عصاره چوچاج فعالیت بهتری را نسبت به سایر عصاره‌ها از خود نشان داد. بنابراین در چوچاج مورد توجه قرار گرفت. علاوه بر این فعالیت به دست آمده میزان فنل و فلاونئید این ترکیب می‌تواند برای توقف واکنش‌های جنرژی‌زای ناشی از تولید بیش از حد ترکیب‌کننده در مسیر سلول مانند انسان به کار گرفته شود.[24] عصاره چوچاج فعالیت بهتری را نسبت به سایر عصاره‌ها از خود نشان داد که خود توجیهی بر اثر ضد تهابی این گیاه است.[10] عناصر و اسلیت، مانند آهن قابلیت تشکیل رادیکال‌های آزاد از پلاسیدها را برای واکنش‌های فنل دارا می‌باشند که می‌تواند موجب بیماری‌های قلبی عروقی در انسان گردد.[15] از آن جا که آهن (II) می‌تواند موجب تولید اکسیژن‌ریز بود که با اکسیداسیون و ترکیب‌کننده فنل به‌خوبی احتمال این نوع حفاظ در مقابل تغییر اکسیداسیونی خواهد بود. ادغام‌گری Diniz قدرت شلاتناک کننده آهن (II) می‌تواند برای روش صورت پذیرفته[9] ان الپا از توان فورترین در تشکیل کمپلکس با آهن (II) بهره می‌برد. در حضور سایر هیدروزین پراکسید از خود نشان دادند. عظیم‌پروره نیز به این ترتیب بود: میوه ۱۰۱۷۲۲/۰ میوه ۱۰۱۱۷۲/۰ > عصاره زولنگن (۱۳/۷۳±۰/۷۳ > میوه کرنوندی (۱۰۰/۰۱±۰/۰۱) > عصاره چوچاج (۳۰/۷۲±۰/۷۲) میلی گرم می‌بایست. عظیم‌پروره نیز به این ترتیب بود: میوه ۱۰۱۷۲۲/۰ میوه ۱۰۱۱۷۲/۰ > عصاره زولنگن (۱۳/۷۳±۰/۷۳ > میوه کرنوندی (۱۰۰/۰۱±۰/۰۱) > عصاره چوچاج (۳۰/۷۲±۰/۷۲) میلی گرم می‌بایست. عظیم‌پروره نیز به این ترتیب بود: میوه ۱۰۱۷۲۲/۰ میوه ۱۰۱۱۷۲/۰ > عصاره زولنگن (۱۳/۷۳±۰/۷۳ > میوه کرنوندی (۱۰۰/۰۱±۰/۰۱) > عصاره چوچاج (۳۰/۷۲±۰/۷۲) میلی گرم می‌بایست.
نتیجه‌گیری

عصارهای منالولی هر چهار گیاه در تمامی‌شش مدل مورد مطالعه، سطوح مختلفی از فعالیت آنتی‌اکسیدانی را از خود نشان دادند. بر اساس نتایج کار، عصاره منالولی برک جوچاخ و اندام هوالی زنگی فعالیت آنتی‌اکسیدانی بهتری داشتند. لذا با توجه به بومی و خوراکی بودن گیاهان مورد استفاده در این تحقیق می‌توان آنها به عنوان منبعی غنی و در دسترس از آن‌هاکسیدان‌ها در صنایع غذایی و داروسازی استفاده نمود.

تشکر و قدردانی

این تحقیق با حمایت مالی مرکز تحقیقات علوم دارویی دانشگاه علوم پزشکی مازندران و در آزمایشگاه این مرکز انجام شده است که به دوی‌وسیله از زحمات و همکاری ایستاده‌شناس و قدردانی می‌شود.

References

fruits peel and leaves. *Pharmacologyonline*

Water soluble antioxidants improve the
antioxidant and anticancer activity of low
concentrations of curcumin in human leukemia

Reduction of the oxidative injury to the rabbits
with established atherosclerosis by protein
bound polysaccharide from *Coriolus* vesicolar.

44(3): 701-5.

flavonoids influence the development of
coronary heart disease? *Scand J Nutr* 1997;

[8] Mozaffarian V. A Dictionary of Iranian Plants
names, Farhang Moaser , Tehran , IRAN. 2006.
[Farsi]

[9] Erdemeier CAJ, Sticher O. A cyclohexenone
and a cyclohexadienone glycoside from
Eryngium campestre. *Phytochem* 1986; 25: 741-
3.

[10] Küpeli E, Kartal M, Aslan S, Yesilada E.
Comparative evaluation of the anti-
inflammatory and antinociceptive activity of
Turkish *Eryngium* species. *J Ethnopharmacol*

Eryngium caucasicum Trautv. Cultivated as a
vegetable in the Elburz Mountains (Northern

new records and synopsis of the new data on
Iranian *Cruciferae* since Flora Iranica.

[13] Ordoniez AAL, Gomez JD, Vattuone MA, Isla
MI. Antioxidant activities of *Sechium edule*
(Jacq.) Swartz extracts. *Food Chem* 2006; 97:
452-8.

[14] Ebrahimzadeh MA, Pourmorad F, Hafezi S.
Antioxidant Activities of Iranian Corn Silk.

antioxidant and antimicrobial activities of
Rumex crispus L. extracts. *J Agri Food Chem*

[16] Yen GC, Chen HY. Antioxidant activity of
various tea extracts in relation to their

In Vitro Antioxidant Activity of Pyrus Boissieriana, Diospyros Lotus, Eryngium Caucasian and Froriepia Subpinnata

S.M Nabavi¹, S.F. Nabavi¹, M.A. Ebrahimbzadeh², B. Eslami³

Received: 02/11/08 Sent for Revision: 25/01/09 Received Revised Manuscript: 25/05/09 Accepted: 08/06/09

Background and Objectives: Pyrus boissieriana, Diospyros lotus, Eryngium caucasicum, Froriepia subpinnata are native to Northern part of Iran and are widely used in local foods. Diospyros lotus fruits are used in preparation of jams. E.caucasicum and F.subpinnata also used as wild herbs in local foods.

Materials and Methods: In this Experimental study, the antioxidant activity of methanolic extract of Pyrus boissieriana, Diospyros lotus, Eryngium caucasicum, Froriepia subpinnata were determined with 6 invitro assay include DPPH, nitric oxide, H₂O₂ radicals scavenging, linoleic acid, reucing power and iron ion chelating activity. Total phenolic and flavonoid compounds of extract was measured by Folin Ciocalteu and AlCl₃ assays.

Results: IC₅₀ in DPPH method was in order: E. caucasicum > F. subpinnata > D. lotus > and P. boissieriana mg ml⁻¹, respectively. The extracts showed weak nitric oxide-scavenging activity. The E. caucasicum and F. subpinnata extracts were better than others respectively. The F. subpinnata and E. caucasicum had shown better reducing power than other extract that was comparable with Vit C (p<0.05).

Conclusion: F.subpinnata aerial parts and E. caucasicum leaves had higher total phenolic and flavonoid contents than others, which may be the result of higher total phenolic and flavonoid contents of them.

Keywords: Antioxidant, Eryngium. Caucasian, Froriepia. Subpinnata, Pyras boissieriana. lotus

Funding: This research was funded by a grant from the research council of Mazandaran University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Mazandaran University of Medical Sciences approved the study.

1- Researcher, Pharmaceutical Sciences Research Center, University of Medical Sciences, Mazandaran, Iran
2- Associate Prof. Dept of Medicinal Chemistry, Pharmaceutical Sciences Research Center, University of Medical Sciences, Mazandaran, Iran
(Corresponding Author) Tel: (0151) 3543081, Fax: (0151) 3543084, E-mail: zadeh20@yahoo.com
3- Assistante Prof., Dept. of Plant Systematic, Islamic Azad University of Ghaemshahr, Iran