چکیده
زمینه و هدف: مقاومت به داروهای ضد باکتریایی در حال گسترش است و دستیابی به داروهای ضد میکروب جدید و درک سازوکار آنها حیاتی است. کینولون ها در این اثر ضد باکتریایی قوی بر علیه باکتری های ممبریت و گرم منفی و پاتوژناهی میکروبی بال می باشند. هدف این مطالعه بافت شناسی و شناسایی گرم منفی یا مثبت در نوزادان و برسی اثرات ضد باکتریایی آنها بر علیه تعدادی از باکتری های گرم منفی و گرم مثبت می باشد.
مواد و روش: این مطالعه آزمایشگاهی در سال 1387 در مرکز تحقیقات علوم دارویی دانشگاه علوم پزشکی تهران و کرمان انجام شد. از واکنش 1- سیکلوروبیل-6-فلونور-8-منوکسی-4-کاکس-2-پیرازین-1-ایل. 2- گافرین و نتروآریل (کریکت) 3- الکرین و نتروآریل. 4- الکرا. 5- نیترورآن-4- آزمایش در بین 1- تیزی آزمایشگاهی با روش رقیق سازی آگر بر علیه تعدادی از باکتری های گرم منفی و گرم مثبت آزمایش شدند.
یافته ها: این ترکیبات نهایی به شکل در این تحقیق آنالوگ نتروفوران (8b) در دارای قوی ترین اثر مهره بر علیه باکتری های گرم مثبت با سیلیس سونتلیسیم استافیلوکوکس اپیسرسیزیس، اینترتوکوکس فیکالیس، میکروکوکوس لونتوس در مقایسه با داروی گنترلنولوکساسین و سایر ترکیبات سنتر شده می باشد.
نتیجه گیری: قرار دادن گروه حجمی (8b- نتروآریل)- 2- تیزی آزمایشگاهی با توان بر علیه باکتریایی کینولون ها والد و گروه های نتروآریل تأثیر داشته باشند. به طوری که آنالوگ 5- نتروفوران قوی ترین اثر ضد باکتریایی را بر علیه میکروکاپسیس داشته است. نشان داد.
واژه های کلیدی: کینولون، ترکیبات نتروآریوماتیک، 6-32-2- تیازی آزمایشگاهی اثر ضد باکتری

1 - دانشیار گروه آموزشی میکروبیولوژی دانشگاه علوم پزشکی کرمان
2 - کارشناس ارشد، مرکز تحقیقات علوم دارویی، دانشگاه علوم پزشکی تهران
3 - مدرس مسئول، مرکز تحقیقات علوم دارویی، دانشگاه علوم پزشکی تهران
aforoumadi@yahoo.com
تلفن: 880722694657-21. دویان: 021-26911178. پست الکترونیکی:
مقیده
فلوروکینولون‌ها گروهی از داروهای ضد باکتری می‌باشند که امروزه به طور گسترده‌ای در درمان عفونت‌های باکتریایی مورد استفاده قرار می‌گیرند. [1] نالیدکسیک اسید اولین عضو گروه کینولون‌ها در سال 1963 کشف گردید. [2] اولین نگاهی در ساختار یکی از کینولون‌ها، قرار دادن اتم فلوئور در موقعیت 6 بود که قدرت ضد باکتریایی آنها را بهبود یافت و موجب گردید کینولون‌ها به عنوان داروهای مفیدی برای درمان عفونت‌های ادراری، عمومی و مجاری تنفسی مورد استفاده قرار گرفتند. قبلاً کینولون‌ها فقط در درمان عفونت‌های مجاری ادراری مؤثر بوده اما بسیاری از داروهای جدید مثل گانترکاسین‌ها (1)، موجکسی‌ها (2) و کینولون‌ها (3) برای درمان عفونت‌های مجاری تنفسی مورد استفاده قرار می‌گیرند، به طوری که این داروها بر علیه S. pneumoniae تغییر در ساختار ایجاد می‌کنند. محققان شما در سیستم مجتمع‌های درونی‌گیاهی C۵۷، C۵۸ و C۵۹ باعث بهبود آرات ضد باکتریایی می‌گردند. قرار گرفتن گروه پیرسون در موقعیت ۲ و یک گروه سیلیکوپروپیل در موقعیت ۴ که در سیلیکوکاسین‌ها (4) و در کینولون‌ها جدیدتر مثل فلوورکینولون‌ها (2) و فلوورکینولون‌ها (3) قابل شناخت است باعث افزایش قدرت داروها شده است [7]. حلقه بی‌پرتاب و گروه کاسنیک اسید در موقعیت ۲ که حالت دو طبیعی ایجاد می‌کند، قدرت فعال داروها در سلول‌های باکتریایی را افزایش داده، به‌دنبال این کار، اثرات افزایش قدرت داروهای استفاده می‌شود. حالت دو طبیعی باعث نفوذ دارو در بافت‌های انسانی نیز مشود. امکان فلوئور در موقعیت ۶ می‌تواند افزایش آنزیم‌های هدف ضروری است [8]. سازوکار عمل این

DNA داروها ماده DNA زیر است. دی‌زی و تریدیموزور IV یک دایش دی‌زی و تریدیموزور می‌باشد که نشان می‌دهد تریدموزور ۲ باکتریایی می‌باشد. محققان این آزمایش را در طی فیزیولوژی DNA همانندی و ترمیم به‌هندی دار می‌کنند. [9]. محققان در سلول‌ها تحت تأثیر استقلال موضع‌های C۶۰ ساختار استفاده ۴-کینولون-۳-کربوکسیلیک اسید است. به علاوه، اعتقاد بر این است که برای ارگانیسم‌های گرم‌دیده، یافته جرم مولکولی و حجم استقلال در موقعیت ۲ مانع فعال مولکول نیستند [1۱]. به طور کلی استقلال در موقعیت ۷ کینولون‌ها نشان می‌دهد در رابطه با اثرات ضد میکروبی، فارماکوکینتیک و عوارض این داروها دارد [۱۲] اما باید به این مسئله، جنین هیپرید از ۵-۶ (نیترول) -۳-۴-آژول و کینولون‌های مختلف از جمله مسئله اسیدوفولکاسین‌ها (4). ترفلولکاسین‌ها (5)، این کاسین‌ها (6) و لوولکاسین‌ها (7) با قدرت ضد باکتریایی قوی ترش الگوگذاری‌های گرم‌دیده در مقایسه با ترکیبات وارد خود ساخته شده است. [1۷].

عوارض جانبی و ناخوشایندی علائم مشاهده شده در سیستم عصبی مرکزی، متلازمة دارو-دارو، سیستم‌زایی در مقابل نور، اسید كبد و قلب از جنین کینولون جدید گزارش شده است. از دریگ مولکول باکتریایی برای بیماری از پاتوژن از این موارد است و مطالعه باکتری‌های مختلف نشان می‌دهد که مقوایت در طی چند سال می‌تواند افزایش و توانایی بیماری را در حال افزایش است. این مقاویت نجات در داروهای موجب گردیده نشان داد که دستیابی به کینولون‌های جدید دو جنگان گردید. نسل جدید

دانشگاه علوم پزشکی رفسنجان
مرجع: 2554، تیم مشترک N۵-۷ (تراوریل) ۱۰:۴۳۵-۲۰۱۰
کیتون‌ها باید بتوانند از یک سو بر مقاومت چند دارویی غلبه نمایند و از سوی دیگر دارای عوارض جانبی کمتر باشند (19.18-19). فلوکیتون‌های (3) یک فلوکیتون‌نوع جدید (نسل جهانی) با ارزش ضعیف‌تر که قوی‌تر در مقایسه با فلوکیتون‌های قدیمی تر مثل فلوقینتولون بر عملی باکتری‌های گرم مثبت و گرم منفی می‌باشند (20). کاهش قند خون به علت عارضه جانبی این داروی منجر به حذف آن از پیاز‌های آمریکایی شد (21). بنابراین، تلاش برای ساخت مسکن‌های فلوکیتون‌نوع (3) با ارزش‌های بالاتر و توانایی بالاتر ضژوری به نظر می‌رسد تا به محدودیت‌های این فلوکیتون‌نوع غلبه شود. هدف این مطالعه بافت‌شناسی نقش چندین نیترورایل تیلیدی ازول – کیتون و بررسی اثرات ضد باکتری‌ای آن با عملیاتی طبیعی استفایی‌کدرکوس اورتونوس، استفایی‌کودوس ایبرمیدیس، استریتوکوس پنومونیا، باسلوس سوئتیلیس، اینتریوکوس بیکالیس، میکروکوس لونتنوس، اشتریشیکالی سالمندا تایفی، شیگلا فالکنری، کلبسیلا پنومونیا، سرانتیا مارسنس، پسودوموناس آتروژیونوزا در ردیابی این ماده و روش‌ها

این مطالعه آزمایشگاهی در سال 1387 در مرکز تحقیقات علوم دارویی دانشگاه علوم پزشکی تهران و کرمان انجام شد. مودافایه‌ای بر علت از مورد استفاده از شرکتهای جهانی و این دارو در کرداری مثبت و ارزش‌های بالاتر ضژوری می‌باشد. نهاده‌زدن به سیستم کولر استاتیو خونی. طیف Shimadzu IR (IR) در دستگاه استیکتروفтомتر Hydrogen-1 nuclear magnetic resonance و طیف 470 Broker با استفاده از اسپکتروفтомتر 500

محمدرضا صحیحی و همکاران

مجله دانشگاه علوم پزشکی رفسنجان

دوره 8 شماره 4، سال 1388

قیمت سهیل پرتره: حداقل غلظت (Minimum Inhibitory Concentration) میگران کنده رشد کلیه تکثیرات سنت شده نهایی بر علیه باکتری‌ها شال استفایی‌کودوس اورتونوس 25932، استفایی‌کودوس ایبرمیدیس 9940، استریتوکوس پنومونیا ATCC 12400 با باسیلوس سوئتیلیس 60.51، اینتریوکوس بیکالیس 60.13، میکروکوس لونتنوس ATCC 1110 و نیکروکوس NCTC 19430, SHIGELLA FLEXNERI ATCC 1015, KLEBSIELLA PENMONIA ATCC 851.
جهر مقایسه با ترکیبات ساخته شده در این تحقیق در
شکل 1 آورده شده است.

![Chemical structures](image-url)

مارس سنس 11111 پپسودوموناس آتروزینوزا
پپسو رنگ آبی الحاقی در محیط کشت جامد مورد بررسی قرار
گرفت. حداکثر غلظت مهار کننده (MIC) حداکثر غلظتی از
ترکیب سنتنیک می باشد که مانع رشد قابل مشاهده
باکتری ها را بیل می گردد. حداکثر غلظت مهار کننده
رشد گیتی گلوکاساین نیز به عنوان شاهد مثبت در نظر
گرفته شد. رقیق الکتریکی ترکیبات ۵ و ۶ داروی استاندارد
ضد باکتری (گیتی گلوکاساین) در ۱ میلی لیتر
املاح شد. رقیق الکتریکی Dimethyl sulfoxide (DMSO)
مختلف به ۱۹ میلی لیتر محیط کشت مولیه هیستون آگار
مذاب ۵۰ درجه سانتی گراد اضافه شد تا غلظت های
نیهای در محدوده ۶۴ تا ۱/۴ میکروجرم در میلی لیتر به
دست آمد. سوسپنسیون باکتری به حکم کرن کلونی در
محیط کشت مولیه هیستون آگار در نمک ۱/۴ به صورت
نیهای شد. دانستنی سلولی سوسپنسیون
باکتری به روش فتومتری در طول موج ۶۰۰ نانومتر
اندازه گیری گردید که با استاندارد
مکافاین مطابقت داشت. سپس سوسپنسیون باکتری در
نمک ۱/۴ رقیق شد تا ۱۰ واحد تا تشکیل دهد. کولونی
der میلی لیتر (CFU/ml) به نیهای شود. ۱ میکروجرم از
سوسپنسیون باکتری به حاصل ۱۰ بود به
صورت نقطه ای در پرنده دیشها کشت داده شد و در
دمای ۲۵ درجه سانتی گراد به مدت ۱۸ ساعت اکولیس
گردید. برای اطمینان از عدم تأثیر حلال روی رشد
باکتری ها، یک هیئت با محیط کشت حاصل دیگر
روپه ای کلسیک که در آزمایشات مورد استفاده قرار
گرفت. نتایج

نتایج

ساختار شیمیایی برخی کینولون ها و هیپریدهای
نیتروژیل تبادل آزول-کینولون که تاکنون ساخته شده,

256-1-05-07اطلاعات درجه 10-1888-07، 9 سال

مجله دانشگاه علوم پزشکی رفسنجان
بهره واکنش 7/3\% نقطه ذوب 273-276 درجه
سانتی گراد.

1H-NMR (500 MHz, DMSO-d6) δ: 0.92-0.46 (m, 4H, cyclopropyl), 3.30-3.99 (m, 9H, piperazine and cyclopropyl), 3.72 (s, 3H, CH3O), 7.59 (s, 1H, H1-thiophen), 7.81 (d, 1H, H2-quinolone, J = 8 Hz), 8.06 (d, 1H, H3-quinolone, J = 8 Hz), 8.44 (d, 1H, H2-quinolone, J = 11.5 Hz), 8.23 (s, 1H, imidazole), 8.73 (s, 1H, H1-quino- lonone). IR (KBr, cm−1): 1736 and 1623 (C=O), 1516 and 1357 (NO2).

1H-NMR (500 MHz, DMSO-d6) δ: 0.95-1.58 (m, 4H, cyclopropyl), 3.33-3.90 (m, 9H, piperazine, and cyclopropyl), 3.72 (s, 3H, CH3O), 7.48 (s, 1H, H1-furan), 7.80 (d, 1H, H2-quinolone, J = 12 Hz), 8.10 (s, 1H, H3-quinolone), 8.73 (s, 1H, H1-quinolone). IR (KBr, cm−1): 1724 and 1619 (C=O), 1521 and 1351 (NO2).

1H-NMR (500 MHz, DMSO-d6) δ: 0.94-1.53 (m, 4H, cyclopropyl), 3.30-3.98 (m, 9H, piperazine and cyclopropyl), 3.75 (s, 3H, CH3O), 7.80 (d, 1H, H2-quinolone, J = 11.5 Hz), 8.23 (s, 1H, imidazole), 8.73 (s, 1H, H1-quinolone). IR (KBr, cm−1): 1736 and 1623 (C=O), 1516 and 1357 (NO2).

نتایج دقایق ضدکاتریپین: ترکیبات در شرایط
ازآمیشگاهی با روش ترکیب سازی آگر بر علیه تعدادی از
میکروگانیسم‌ها مورد بررسی قرار گرفتند. حداکثر غلظت مهار می‌کند. در مقایسه با کمپانول والد کلی از فلوکاسین‌های (3)
جدول 1- اثرات ضد باکتری‌ای ترکیبات 8d، 8e و داروی فرامسین-Kو فلوکاسین (3) بر علیه سوسه‌های بروز پس از بر حسب میکروژم بر

<table>
<thead>
<tr>
<th>سوژه‌های</th>
<th>ترکیبات</th>
<th>8a</th>
<th>8b</th>
<th>8c</th>
<th>8d</th>
<th>8e</th>
<th>8f</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>میکروبی</td>
<td>Staphylococcus aureus</td>
<td>ATCC 25923</td>
<td>Staphylococcus epidermidis</td>
<td>ATCC 4940</td>
<td>Streptococcus pneumonia</td>
<td>ATCC 1240</td>
<td>Bacillus subtilis</td>
<td>ATCC 6051</td>
</tr>
<tr>
<td>NO2- Ar</td>
<td>0/5</td>
<td>0/125</td>
<td>1/625</td>
<td>2/32</td>
<td>4/64</td>
<td>8/125</td>
<td>0/625</td>
<td>1/625</td>
</tr>
</tbody>
</table>

چنان که در جدول 1 مشاهده می‌گردد ترکیبات 8d، 8e و 8f بر علیه E. feacalis و ترکیبات 8b بر علیه S. aureus و 8c بر علیه M. luteus دارای اثرات قابل مقایسه و بهتر نسبت به گنی فلوکاسین‌سی باشدند. اثر ترکیبات بر روی باکتری‌های گرم منفی چندان قابل توجه نیست.
تشکر و قدردانی

از معاونت محترم پژوهشی دانشگاه علوم پزشکی
کرمان جهت تأمین اعتبار این طرح تشکر و قدردانی به
عمل می‌آید.

References

Synthesis and In vitro Antibacterial Activity of N-[5-(5-nitroaryl)-1,3,4-Thiadiazol-2-yl] Piperazinyl Quinolones

M.H. Moshafi¹, S.M. Safavi², A. Foroumadi³

Received: 23/02/09 Sent for Revision: 25/07/09 Received Revised Manuscript: 08/10/09 Accepted: 26/10/09

Background and Objectives: Because resistance to antimicrobial drugs is widespread, recognition of new antimicrobial and understanding of their mechanisms are vital. The quinolones have a broad antibacterial spectrum of activity against Gram-positive, Gram-negative and mycobacterial pathogens such as anaerobes. In the present study, the synthesis and antibacterial activity of a new series of N-piperazinyl quinolones containing 5-(nitroaryl)-1,3, 4-thiadiazole-2-yl moiety have been studied.

Materials and Methods: In this laboratory study, the reaction of 1-cyclopropyl-6 fluoro-8 methoxy-4-oxo-7-(piperazin-1-y1)-1, 4- dihydroquinoline-3-carboxylic acid (compound 3), with 2-chloro-5-(nitroaryl)-1,3,4-thiadiazol (compounds 9a-f), in DMF in the presence of NaHCO3 at 85-90°C, gave final compounds 1-cyclopropyl-6fluoro-7-[4-[5-(nitroaryl)-1,3, 4-thiadiazol-2yl], piperazin-1-yl]-8- methoxy-4-oxo-quinoline-3-carboxylic acid (8a-f). compounds 8a-f, were tested in vitro by the conventional agar dilution method against a panel of microorganisms including staphylococcus aureus, Escherichia coli, salmonella typhi, shigella flexneri, klebsiella pneumonia, serratia marcescens and pseudomonas aeruginosa.

Results: Among synthesized compound, nitrofuran analog 8b exhibited more potent inhibitory activity against Gram-positive bacteria including B. subtilis, S. epidermidis, E. feacalis, M. lutes, in respect to other synthesized compounds and reference drug gatifloxacin.

Conclusion: Introduction of the bulky group of [5-(5-nitroaryl)-1,3,4-thiadiazol-2-yl] could dramatically impact the antibacterial activity of the parent quinolone, and among the nitroaryl groups, 5-nitrofuryl analogue showed the most potent antibacterial activity against the tested microorganisms.

Key words: Quinolones, Nitroaromatic Compounds, 1,3,4-Thiadiazole, Antibacterial Activity

Funding: This research was funded by Kerman University of Medical Sciences.

Conflict of Interest: None declared.

1- Associate Prof., Depl. of Microbiology, Faculty of Pharmacy, University of Medical Sciences, Kerman, Iran
2- Master Science, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
3- Prof., Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
(Corresponding Author) Tel: (021) 66954708, Fax: (021) 66461178, E-mail: aforoumadi@yahoo.com