برهمکشی سیستم کانابینوئیدی و نیکوتینی در یادگیری احترایی غیرفعال در موس های کوچک آزمایشگاهی

مرتضی پیری 1، محمد ناصحی 2، محمد رضا زرین دست 3

چکیده
زمینه و هدف: کانابینوئیدها ارث متنوع و پیچیده‌ای بر روی عملکرد سخنگویی می‌کنند. به دلیل همبستگی بین گیرنده‌های نیکوتینی و کانابینوئیدی در برخی از ساختمان‌های مغزی نظیر هیپوكامپ پشته‌ای، احتمال وجود برهمکشی بین سیستم کانابینوئیدی و نیکوتینی در زمینه‌های متنوعی می‌باشد. در این مطالعه، اثر مکانیسم‌های بر یادگیری وابسته به وضعیت القا شده با دارو WIN55,212-2 مورد بررسی قرار گرفته است.

مواد و روش‌ها: در این مطالعه تجربی، از 80 سر موس کوچک آزمایشگاهی نر نرده گرفته شد. نمونه‌ها پس از نمایش در دستگاه استریتوکولا تولید و کانال و دستگاه دوباره در ناحیه CA1 هیپوكامپ بشنویه داده شد. بعد از طی دوره بهبودی هنگ‌ریز، آزمون رفتاری با استفاده از دستگاه یادگیری احترایی غیرفعال مدل Step-down میزان تأخیر حیوان در پایین امید است که با عناوان معیار حافظه اندازه‌گیری شد. نتایج گروهی و یافته‌ها: در دو گروه آزمایشگاهی، یک گروه از موس کوچک به دارو WIN55,212-2 و یک گروه از موس کوچک به دارو WIN55,212-2 نموده شدند. نتایج نشان داد که گروه‌های کانابینوئیدی و نیکوتینی هیپوكامپ بشنویه نقش مهمی در دانشکده ایجاد وابستگی وابسته به وضعیت القا شده با 2-212-2 داشته است.

واژه‌های کلیدی: کانابینوئید، یادگیری احترایی غیرفعال، موس کوچک آزمایشگاهی

1-انتشار مستند. مربی گروه آزمایشی زیست‌شناسی، دانشگاه آزاد اسلامی، واحد اردبیل
biopiri@yahoo.com
تلفن: 051-7721497-7798724، پست الکترونیکی:
2-استاد جری گروه آزمایشی زیست‌شناسی، دانشگاه آزاد اسلامی، واحد گرمای
3-انتشار مستند گروه آزمایشی زیست‌شناسی، مرکز ملی مطالعات اعیان، دانشکده پزشکی، دانشگاه علوم پزشکی تهران

Downloaded from journal.rums.ac.ir at 4:11 +0330 on Sunday December 30th 2018
مقدمه

رفتار یادگیری واپسی به وضعیت، بیدهای است که در آن به یادآوری اطلاعات تازه کسب شده تناها در شرایطی صورت می‌گیرد که فرد از لحاظ حسی و فیزیولوژیک در همان شرایطی قرار گیرد که اطلاعات کس همه است [1].

مطالعات آشکار نمودند که در پروسه نظیر ایبوتین‌ها می‌توان به وضعیت واپسی و ایجاد یادگیری واپسی اثرات جانبی و اثرات دیگری را در صورت نموده‌ای که گیرنده‌های نیکوتینی نقص کاملی در فرآیندهای حافظه، یادگیری و توجه باری می‌کند [12]. هیپوبیتامین و نقص‌های کولینزینی مهمی در کارکرد میانی سیستم و بازی عمومی ناحیه مورب بروگا در بافت مدن و گیرنده‌های نیکوتینی نشان می‌دهند که گیرنده‌های نیکوتینی نقص مهمی را در فرآیندهای حافظه، یادگیری و توجه باری می‌کند [12]. هیپوبیتامین و نقص‌های کولینزینی مهمی را در کارکرد میانی سیستم و بازی عمومی ناحیه مورب نورون‌های اصیل و نورون‌های بین‌انیابی هیپوبیتامین وجود دارد [13-14]. برخی از گیرنده‌های نیکوتینی در رون نورون‌ها، یادگیری و توجه این گیرنده‌ها باعث افزایش راهسایی استیل‌کولین، دوباین و گلوتامات می‌شود [15، 16].

فعل شدن این گیرنده‌ها با نیکوتین، یا استیل‌کولین درون‌زاد، باعث تغییر شکل سینپاسی شده و تقویت روز مرتند (potentiation) از در نواحی مختلف مغز تسهیل می‌نماید که این اثرات شامل به واسطه افزایش راهسایی گلوتامات و N-methyl d- aspartate receptor (NMDA) صورت گیرد [17، 18]. در بیماری آلزایمر، گیرنده‌های NMDA می‌توانند تحریک پیش‌رونده واپسی به سن می‌باشند. نورون‌ها که نقص کولینزینی قسمت و ایجاد لوب پشتی و گیرنده‌های نیکوتینی برخی از نواحی مغز مانند کورنتکس و هیپوبیتامین که در فرآیندهای جراحی و حافظه نقص دارند و دچار اسپیسیون می‌باشند و کاهش نسبی سیستم کولینزینی که ناشی از این مسبب می‌باشد، باعث اختلال در اعمال شناختی بیمار می‌گردد [13-14].

کناره‌گیری را تخریب نمایند [10]. در هیپوبیتامین، کالبینزین‌ها با اثر بر روی گیرنده‌های بین‌سینپاسی CB1 راه‌برد می‌باشند که ممکن است که در آن به یادآوری اطلاعات تازه کسب شده تناها در شرایطی صورت می‌گیرد که فرد از لحاظ حسی و فیزیولوژیک در همان شرایطی قرار گیرد که اطلاعات کس همه است [1].

مطالعات آشکار نمودند که در پروسه نظیر ایبوتین‌ها

لیپین [12] و هیپستامین [4] قادر به ایجاد یادگیری واپسی به وضعیت می‌باشند. اثرات گیرنده‌های CB1 اثرت ایبوتین‌ها است که گیرنده‌های CB1 و CB2 اثرات جانبی دارای مشابه ایبوتین‌ها است. گیرنده‌های CB1 و CB2 را تخریب نمایند.

CB2 و CB1 گیرنده‌های دو گیرنده اصلی مغز (CB1) به CB3 می‌باشند. CB2 و CB1 گیرنده‌های CB1
با توجه به همبستگی گیرنهایگاهی کابیونتی و
نيکوتینی در سیستم عصبی مرکزی و در نظر گرفتن این
نکته که مهار گیرنهایگاهی پیش سینیاپسی نیکوتینی توسط
مکالمایی با ماند تحیرگیرنهایگاهی پیش سینیاپسی
WIN55, ۲۱۲-۲، باعث کاهش راهی
بیو استاتیکی متفاوت نظر است. کولین، دوبامین و
گلوتامات می‌شود، این احتمال وجود دارد که مکالمایی
 قادر به تقلیل اثر WIN55, ۲۱۲-۲ در زمینه حافظه
اختیاری مهاری باشد. بنابراین، در این مطالعه برای اولین
بار برهمکنش گیرنهایگاهی کابیونتی و نیکوتینی در
زمینه پذیرشی احتیاری غیرفعال مورد بررسی قرار گرفت.

مواد و روش‌ها

در این مطالعه تجربی و سوزشی گیرنهایگاهی
NMRI (زن تقریبی ۳۲-۲۲ گرم) که از استینتو
باستور ایران به شکل استفاده گردید. حیوان‌ها بعد از
انتقال به حیوان‌خانه حرفه‌ای در فضه‌های دمایی با
دورة شبانه روزی طبیعی (۱۲ ساعت روشانی، ۱۲ ساعت
تاریکی) و در دمای ۲۴±۳ درجه سانتی‌گراد با آب و
غذای کافی نگهداری شدند. در هر سر از این چهار ماهگی، ۵ نفر
مود استفاده شد. دستگاه‌های پذیرشی احتیاری غیرفعال
(Membrane (Inhibitory (passive) avoidance apparatus)
، جعبه‌چوبی به ابعاد ۳۰۰×۳۰۰×۳۰ سانتی‌متر
Step-down
مقیاس. کف دستگاه دازای ۲۹ میلی‌فولت با قطع
سانتی‌متر است که به فاصله ۱ سانتی‌متر از یکدیگر قرار
گرفته‌اند. این میله‌ها با دستگاه تحیرکننده متصل شده
و شروع کارکردی از طریق میله‌ها به حیوانات مورد
ازمایش وارد می‌شود. یک سکوی مکعبی چوبی به ابعاد
۴×۴×۴ سانتی‌متر در قسمت میانی کف دستگاه (رودی

ازمون‌هایی رفتاری: پذیرشی احتیاری غیرفعال مدل
Step-down
روش: مورد پیش برای پذیرشی حافظه دراز
مدت در موسه گیرنهایگاهی از امکان‌های می‌باشد [۱۸]. در
ابن روش، پذیرشی حافظه در در روز شنوا و میان اعداد

 nodal دانشگاه علوم پزشکی رفسنجان
مجله ۱۴۶۴، سال ۳، شماره ۹
دوره ۱۳۸۹

بافت‌نامه: پس از چکش حیوان‌ها توسط کلرورم، 0.5 میکرویلتر نتیجه بیش از 0.1 به داخل هر کانال تزریق شد، سپس مغز درون مجسمه خارج گردیده و در محلول فیلم‌سازی 1% قرار داده شد. پس از یک هفته با استفاده از نیک جراحی در محل ورود کانال به مغز بررسی‌های داده شده و محل ورود کانال به مغز به وسیله میکروسکوپ لوب مورد مطالعه قرار گرفت. جهت مطالعه مقاطع بافتی نهایی شده، از اطلس پاکسینوس استفاده می‌شد.

توجهی و تحلیل آماری: در همه آزمایش‌ها، زمان توقف حیوان روي سکو، به صورت میانه (Median) و چارک ثبت گردید. به هنگام تفاوت‌های خاص زیادی که در پاسخ‌های یادگیری حیوانات وجود داشت، داده‌ها توسط آنالیز واریانس یکطرفه (ANOVA) برای داده‌های غیرپارامتریک (کروکال و الیس) و به دنبال آن برای بررسی جفت گروه‌ها از روش Mann- withy, U-test استفاده گردید. در نتیجه آزمایش‌های آماری، p<0/10 می‌تواند پذیرفته شود. برای انجام محاسبات آماری از نرم‌افزار SPSS و برای رسم نمودارها از نرم‌افزار استفاده شد.

تیمارهای دارویی و آزمایش‌های انجم شده:

1- بررسی تأثیر تزریق پس از آموزش 2، 212-5

بر روی حافظه احترافی گیفوال: هشت گروه حیوان در این آزمایش به کار گرفته شدند. گروه اول بالاکشیده پس از آموزش سالیان و گروه دوم حامال را به صورت درون مغز دریافت کردند. سه گروه باقی مانده مقدار مختلف دریافتی کردند. سه گروه باقی مانده مقدار مختلف دریافتی کردند. نتایج نشان داد که میکروگریده بر هر میزان حافظه جهت کند. حافظه کامل در نظر گرفته می‌شود.

توزیع دوران مغزی دارو: برای تزریق دارو پس از برداشت نسیم داخل کانال راهنما، سر گونه اندازه 27 دنیا،پزشکی که 9 میلی‌متر طول داشت و به کم‌دان تبی نواز کمربند (شماره 4) متصل بود، در داخل کانال راهنما قرار داده شد و در هر کانال 5/0 میکرویلتر دارو در مدت 60-90 ثانیه تزریق شد. در حین تزریق به حیوان‌ها، داده شد به نتایج این آزمایش کن.
کردن، در روز آزمون، گروه‌های مختلف، سالین‌ها با حامل
1) میکروگرم به هر مسح (5 دقیقه قبل از آزمایش،
دریافت داشتند. سه گروه دیگر بالافلاکسل بعد از آزمایش
2) WIN55, 212-2 (1 میکروگرم به هر مسح) و در روز
آزمون مقادیر مختلف 2-212/500، 1/5 میکروگرم به هر مسح) را 5 دقیقه قبل از آزمون به صورت
دون‌گزی دریافت کردند.

2- بررسی تأثیر تزریق پس از آزمون AM251 بر روی
حافظه احترازی غیرفعال: چهار گروه حیوان در این
آزمایش استفاده شد. گروه اول بالافلاکسل پس از آزمایش
سالین و سه گروه باقی مانده مقادیر مختلف AM251
(0.2، 0.4 و 15 میکروگرم به هر مسح) را به صورت درون
مغزی دریافت کردند. در روز آزمون تمامی گروه‌ها قبل از
آزمون، سالین (1 میکروگرم به هر مسح) را 5 دقیقه قبل
از نتیجه داشتند.

3- بررسی تأثیر تزریق درون مغزی مکامیلامین بر
حافظه احترازی تخریب شده ناشی از WIN55, 212-2 در
این آزمایش دچار گروه حیوان استفاده شد. بنابراین گروه اول،
سالین را بالافلاکسل بعد از آزمایش، و در روز آزمون سالین‌ها
با مقادیر مختلف مکامیلامین (2، 4، 10 میکروگرم
به هر مسح) را به جای دیگر دقیقه قبل از آزمون دریافت کردند.
بنابراین گروه باقی مانده بالافلاکسل بعد از آزمایش
2-212/500 میکروگرم به هر مسح) و در روز آزمون سالین
با مقادیر مختلف مکامیلامین (2، 4، 10 میکروگرم
به هر مسح) را به جای دیگر دقیقه قبل از آزمون به صورت درون
مغزی دریافت داشتند.

4- بررسی تأثیر تزریق درون مغزی مکامیلامین به
علاوه WIN55, 212-2 بر حافظه احترازی تخریب شده
ناشی از WIN55, 212-2 در این آزمایش گروه حیوان
نتایج تزریق پس از آموزش 2-212 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعال در موس‌های کوچک آزمایشگاهی: آزمون‌های تحلیل واریانس یک طرفه کروسکال والپس نشان داد که تزریق پس از آموزش WIN55، 212-2 بر روی حافظه احترازی غیرفعل ...
به کمک تیم کانابینوئیدهای مکاپیلایمین و گینت، نتایج تزریق مقادیر ویژه مکاپیلایمین و همردم با هم بر روی حرکت تخربه شده توسط ANOVA و همان‌گونهکه در موارد قبلی نشان داده شده که تزریق پس از مکاپیلایمین غیر فعال تحت‌الحمایه باعث می‌شود، مطالعات قبلی نشان می‌دهند که زمان زم
حافظه می‌باشد. گیرنده‌های CB1 در پایه‌آکسونی نورون‌های پیش‌سیناپسی قرار دارند و فعال شدن آن‌ها، گیرنده‌های ریاسبی منابعی به یکدیگر و حافظه، می‌تواند گفت ۲۱۲-۲۱۵، با تزیین سطح شده، گیاهی گلوپاتام‌ها و استیل کولین در یک مسیر قابلیت بات تغییر حافظه می‌شود [۲۰۰۱، به علاوه، نتایج این مطالعه نشان می‌دهد که حافظه تغییر شده با تزیین بعد از آموزش ۲۱۲-۲۱۵ با تزیین مجدد همان مقدار ۲۱۲-۲۱۵ در روز آموزن دوباره به حالت عادی بر می‌گردد. این اثر ۲-۲۱۵، یادگیری وابسته به وضعیت نامه‌ای می‌شود.

گزارش‌های جدید نشان می‌دهد آنتاگونیست گیرنده‌های CB1 باعث بهبود حافظه می‌شود [۲۱۲۰۱۶] و با بر حافظه تأثیری نمی‌گذارد [۲۱۳۷۰۰۱۶، ۲۱۴۷۰۰۱۶] بر این مطالعات آثار سپسینک آنتاگونیست‌های کابانتطیکی به طور کلی مورد مطالعه قرار داده‌اند. در حالی که آنتاگونیست‌های مختلف کابانتطیکی می‌توانند آثار شناختی منوعی را در یک هم متناسب حافظه می‌کنند و بر حسب نوع آنتاگونیست به کار رفته، محل تزیین دارو در مغز و مقدار داروسی تزیین شده. تأخیر مختلف ابتدا می‌گردد [۲۲۴۷۰۰۱۶، ۲۲۴۷۰۰۱۶، ۲۲۴۷۰۰۱۶]. نتایج مطالعات قبلی نشان می‌دهد که تزیین بعد از آموزش (آنتاگونیست اختصاصی گیرنده‌های CB1 (امیناتو) کابانتطیکی) در روز آموزن می‌شود. همین‌طور مشاهده می‌شود این تأثیر، بعد از آموزش می‌شود. بنابراین تغییرات جوهری حافظه ایجاد می‌گردد [۲۲۴۷۰۰۱۶، ۲۲۴۷۰۰۱۶، ۲۲۴۷۰۰۱۶]
نتیجه‌گیری

نتایج تحقیق حاضر نشان می‌دهد که آگونسیت و آنتاگونسیت‌های کربنات‌بندی باعث تخریب حافظه احترازی می‌شود که نشان دهنده نقش تدیل کننده کربنات‌بندی در راه‌های باراک‌کاری و حافظه می‌باشد.

نتایج این تحقیق همواره مشخص نمود که کربنات‌بندی باعث تخریب می‌شود که نشان دهنده نقش تدیل کننده کربنات‌بندی در راه‌های باراک‌کاری و حافظه می‌باشد.

تشکر و قدردانی

بدين وسیله از زحمات خانم مریم السادات شاهین كه در تحقيق حاضر همکاري ي Shane به نمودهند. تشکر و قدردانی مي‌گردد.
References


[21] Takahashi RN, Pamplona FA, Fernandes MS. The cannabinoid antagonist SR141716A facilitates memory acquisition and
consolidation in the mouse elevated T-maze. 

[22] da Silva GE, Morato GS, Takahashi RN. Rapid tolerance to Delta(9)-tetrahydrocannabinol and cross-tolerance between ethanol and Delta(9)-tetrahydrocannabinol in mice. _Eur J Pharmacol_ 2001; 431(2): 201-7.


Interactions Between the Cannabinoid and Nicotinic Systems on Inhibitory Avoidance Learning in Mice

M. Piri¹, M. Nasehi², M.R. Zarrindast³

Received: 09/07/09 Sent for Revision: 16/03/10 Received Revised Manuscript: 13/04/10 Accepted: 24/04/10

Background and Objectives: Cannabinoid exerts have widespread and complex effects on higher cognitive functions. An overlapping distribution of nicotinic receptors with cannabinoid receptors has been reported in some brain structures such as dorsal hippocampus, thus the functional interactions between cannabinoid and nicotinic systems in cognitive control seem possible. In the present study, the effects of mecamylamine on WIN55, 212-2 induced state-dependent learning was examined.

Materials and Methods: In this experimental study, 280 adult male NMRI mice were anaesthetized and then were cannulae implanted bilaterally in the CA1 regions of the dorsal hippocampus using stereotaxic method. After a seven day recovery duration, behavioral testing was started in inhibitory avoidance task. The animals were trained in a step-down type inhibitory avoidance task, and tested 24h after training to measure the step-down latency for the assessment of memory retention. All experiments were conducted in accordance with "standard ethical guidelines for animal care and use".

Results: Post-training administration of WIN55, 212-2 and AM251 decreased the memory retrieval. The memory impairment induced by WIN55, 212-2 was completely reversed by pre-test administration of WIN55, 212-2 and/or mecamylamine, suggesting that WIN55, 212-2 induced state-dependent memory.

Conclusion: These results suggest that nicotinic receptors of the dorsal hippocampal may play an important role in Win55,212-2-induced amnesia and WIN55,212-2 state-dependent memory.

Key words: WIN55, 212-2, Mecamylamine, Inhibitory avoidance learning, Mice

Funding: This research was funded by Tehran University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Tehran University of Medical Sciences approved the study.

1- Instructor, Dept. of Biology, Islamic Azad University, Ardabil branch, Ardabil, Iran
(Corresponding Author) Tel: (0451) 7727905, Fax: (0451) 7729826, E-mail: biopiri@yahoo.com
2- Assistant Prof., Dept. of Biology, Islamic Azad University, Garmsar branch, Semnan, Iran
3- Prof., Dept. of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran