مقاله پژوهشی
مجlete دانشگاه علوم پزشکی رفسنجان
دروه دهم، شمایه اول، بهار ۱۳۹۲
۲-۱۲ میلی‌سیلوس عصاره سیر با دو ماده شستشو‌هدنده داخل کانال بر
انتروکوکوس فکالس
زینب کاظمی زاده۱، مناز تشکری۲، محسن رضائیان۳
دریافت مقاله: ۸/۱/۱۳۹۳ ارسال مقاله به نوبه‌گیره جهت اصلاح: ۹/۱/۱۳۹۳
دریافت اصلاحی از نوبه‌گیره: ۹/۵/۱۳۹۳ پذیرش مقاله: ۸/۶/۱۳۹۳
چکیده
زمینه و هدف: در درمان ریشه دندان، از بین بردن میکروگانیسم‌های موجود در کانال ریشه قبل از پر کردن آن، از
همایش بالایی برخوردار است. یکی از علل شکست درمان، از بین ترفند و یا حفظ ناکاری باکتری‌های مسئول عفونت‌های
مقوام اندودنتیک، از جمله باکتری انتروکوکوس فکالس می‌باشد. هدف این مطالعه بررسی مقایسه‌ای اثر عصاره سیر بر
روی باکتری انتروکوکوس فکالس با دو ماده شستشو‌هدنده کانال ریشه بود.
مواد و روش‌ها: در این بررسی آزمایشگاهی، اثر ضدعفونی کننده عصاره خالص سیر (۱۰۰۰/۱)، عصاره ۰/۸ سیر، کلرگردن‌دین
مورد مقایسه Well Agar Diffusion ۲/٪، هیپوکلریت صدیم ۱/۵٪ و ترکیب عصاره خالص سیر با کلرگردن‌دین ۲/٪ به روش قرار گرفت. بر روی ۱۸
بیلیت حاوی محیط کشت مولر هیپنترن آگار، انتروکوکوس فکالس کشت داده شد. در هر بیلیت ۶
یک و دو چاهک در یکی ماده آزمایشی و یکی از چاه‌ها نیز بیای آب مقدار استریل در نظر گرفته شد. بیلیت‌های
آماده شده در دو گروه هوازی (n=۹) و بی‌هوازی (n=۹) در دمای ۳۷ درجه سانتی‌گراد به مدت ۲۴ ساعت اکتوپه شدند.
سپس قطر هاله عدم رشد در اطراف هر چاهک اندازه‌گیری و ثبت گردید.
یافته‌ها: نتایج نشان داد که هیپوکلریت صدیم ۱/۵٪، اثر ضدعفونی‌کننده در مقایسه با دیگر مواد در هر گروه
هوازی و بی‌هوازی دارد که این اختلاف از نظر آماری معنی‌دار بوده است (p<۰/۰۵). بعد از هیپوکلریت صدیم ۱/۵٪، موثرترین
مواد به ترتیب: کلرگردن‌دین ۲/٪؛ عصاره خالص سیر، مخلوط کلرگردن‌دین ٪ ۲؛ عصاره خالص سیر و عصاره سیر ۰/۸
بود (p<۰/۰۵). اختلاف بین اثر ضدعفونی‌کننده عصاره خالص سیر و ترکیب کلرگردن‌دین ۲٪ با عصاره خالص سیر در گروه هوازی
معنی‌دار نبود.
نتیجه‌گیری: نتایج این مطالعه نشان داد که عصاره سیر با باکتری انتروکوکوس فکالس در شرایط آزمایشگاهی در محیط
هوازی و بی‌هوازی مؤثر می‌باشد، ویل در مقایسه با کلرگردن‌دین و هیپوکلریت صدیم اثری‌یافته کمتری دارد.
واژه‌های کلیدی: سیر، کلرگردن‌دین، هیپوکلریت صدیم، انتروکوکوس فکالس

1- استادیار گروه آموزشی اندودنتیک، دانشکده دندانپزشکی، دانشگاه علوم پزشکی رفسنجان
2- استادیار گروه آموزشی علوم آزمایشگاهی، دانشکده پزشکی، دانشگاه علوم پزشکی رفسنجان
3- دانشیار گروه آموزشی پزشکی اجتماعی، دانشکده پزشکی شیراز
مقدمه
یکی از موضوعات مورد بحث در درمان ریشه دندان که از اهمیت بالاتری برخوردار می‌باشد، از بین بردن میکروگلاسیمیسیون می‌باشد. در کنار ریشه، قبل از بردن مرطوبات مناسب، محبوب‌ترین روش برای پیش‌روی و پیش‌رفت بیماری‌های پالپ و پریدکولار مخصوص می‌باشد. بنابراین، کنترل عامل میکروگلاسیمیسیون توسط روش‌های بیومکانیکال می‌تواند نقش مهمی در درمان موفق ریشه دندان ایفا نماید [1].

شکست درمان ریشه ریشه می‌تواند به علت از بین نرفتن یا حذف ناکام باکتری‌های مستوی فونت‌های مقاوم ریشه دندان باشد [2]. باکتری انتروکوکوس فیکالیس شروع زیادی در مقاومت‌های مقاوم ریشه دندان دارد، به همین جهت، چالش‌هایی در درمان‌های اندودنتیک برای دستیابی به شیوه‌های مؤثر حذف این میکروهای ارگانیسم وجود داشته است [3].

اکثر باکتری‌هایی که در فلور میکروپی کانال ریشه یافت می‌شود منکس است به راحتی توسط عامل مکانیکی وسایل اندودنتیک برداشته شوند. با این وجود، ماهیت پیچیده بسیاری از کانال ریشه به عنوان می‌شود تا باکتری‌ها، باقی بگذاری‌های ارگانیسم موجود در توبول‌های عاجی حتی بعد از آبادمانی مکانیکی دقیق کانال، به طور کامل پاکسازی نشوند. به همین دلیل تاکنون مواد مختلفی برای پاکسازی کانال برداشت‌شده‌اند. با این ترتیب، نیاز به همکاری باکتری‌های نکروتیک بال‌پر یا نکروتیک بال‌پر و حذف میکروگلاسیمیسیون از کانال ریشه مورد استفاده قرار گرفته‌اند [4].
با در نظر گرفتن خاصیت ضدبیکوبی سیر و مشکلات استفاده از سایر موارد شیمیایی استنشا دهنده کانال ریشه، طراحی مطالعات آزمایشگاهی و بالینی برای استفاده از عصاره سیر به عنوان یک گانژکین مناسب سودمند ویلیام و هدف از تحقیق حاضر، مقایسه آزمایشگاهی اثر ضدبیکوبی عصاره سیر، هیپوکلریت سدیم، کلرگزیبدین و ترکب کلرگزیدین با عصاره سیر خالص بر روی باکتری انتروكوس فکالیس بود.

مواد و روش‌ها
این پژوهش آزمایشگاهی، در بهار سال ۱۳۸۸ در آزمایشگاه بیمارستان علی بن ابیطالب (ع) شهر رفسنجان انجام شد. در این بررسی، حجم نمونه بر اساس مطالعه و همکاران [۱۲] انتخاب گردید. بر اساس [۱۳] وool۱۸ کلیت حاوی محیط کشت سیلور هیپنوت آگار آماده و برای بررسی اثر Darmstadt, Germany) Well Agar ضدبیکوبی محلول‌های مورد آزمایش روش به کار برده شد. برای تهیه سوپسیسیون Mikrobi, از سوپه استاندارد انتروكوس فکالیس استفاده Manassas, VA, United States) ATCC 29212 گردید. چند کلون از کات خالص باکتری برداشته و در ترپتیک (Merck, Darmstadt, Germany) محیط مایع (Tryptic) تلقیح و به مدت ۱۸ ساعت در دمای ۳۷ درجه اکوبه شد. سپس غلظت متوسط ۱۵ واحد Mک فاکاند از سوپه حاصل تهیه و برای تلقیح برو روی پلاک‌های حاوی محیط کشت سیلور هیپنوت آگار استفاده شد. جهت ایجاد چاهک، لوله شیشه‌ای استریل به قطر ۵ میلی‌متر به کار گرفته شد. که در هر پلاک ۶ چاهکی که به سوی داخل مناسب از یکدیگر بانج کرید. در هر یک از پلاک‌ها، آب مقطور استریل به عنوان گونه کنتل در کیک از چاهک‌ها ریخته می‌گردد [۱۴]. همچنین به هیدروکسی آنانئیت و بافت نرم متصو شده و میدان الکتریکی آنان را برای جلوگیری از اتصال باکتری‌ها تغییر می‌دهد [۱۵]. یکی از مشکلات گلره‌گزیدن گلوباتونه، وابسته به یون اسید این به pH کاهش قابل توجه این فعالیت در حضور مواد ارگانیک است [۱۶]. این ماده برخلاف هیپوکلریت سدیم، فاقد خاصیت حلال گردنگی بافتی است [۱۷].

سیر از زمان‌های قدیم به عنوان (Allium Sativum) دارو استفاده شده و خاصیت ضدبیکوبی، ضدروپسی و ضدفارسی آن شناخته شده است [۱۸]. عصاره سیر خام علیه بسیاری از باکتری‌های یاً پاتوز و گونه‌هایی که در برابر آنتی‌بیوتیک مقاوم گشته و حتی توکسین ایجاد شده توسط بعضی از گونه‌های یاً پاتوز مؤثر بوده است [۱۹]. تحقیقات نشان داده که عصاره سیر و ماهی ماؤن آلپنی، طیف ضدبیکوبی و ویژگی داشته و بر روی سالمونلا استریپت، استاتیفیلکوس، کلیسیلا پروتئنا، کلسترودیوم، ماپوکاکتوکوس، هیپوکاکتوکوس می‌باشد [۲۰-۲۱].

اثر عصاره سیر را به روي Bakri And Douglas باکتری‌های مختلف دندان‌مریز بررسی قرار دادند. آنها با توجه به اثر ضدبیکوبی عصاره سیر بر روی این باکتری‌ها بیان کردن که امکان استفاده از آلپسین برای درمان پروپیدنتی و فعالیت‌های دهان وجود دارد [۲۲].

بررسی‌های مختلفی وجود دارد که اثرات استنشایده‌های موجود را تحت شرایط گوناگون بر روی باکتری انتروكوس فکالیس مورد مطالعه قرار دادند [۲۳]. ویلی تاکاونو بررسی برای مقایسه اثر ضدبیکوبی عصاره سیر با دیگر شستشوی‌های کانال انجام نشده است.
شماره گذاری شده و 5 میکرولاتری از آنها با استفاده از سپرلاسترول به صورت کور (Blind) در چاه‌های مخصوص خود که از قبیل شماره‌گذاری شده بودند در هر پلیت ریخته شد. مخلوط در کل در 18 چاهک ریخته شد و در مجموع به همه گروه کنترل (آب مقطور استریل) شناخت 108 چاهک در 18 پلیت انجام شد. نتایج مراحل کشت باکتری و ریختن محلول‌های در چاهک در زیر برجسته و در کتاب شعله و شناخت استاتیک انجام شد. سپس پیل‌ها به طور تصادفی به ۲ گروه تقسیم شدند. گروه ۱ (پلیت به صورت هوازی و گروه ۲ (پلیت به صورت بی‌هوتزی (Anaerocult A (در جار بی‌هوتزی همراه با سانتی‌گراد و به مدت ۲۴ ساعت انکوه شدند. برای ایجاد Gas Pak (Merck, Darmstadt, شرایط بی‌هوتزی همراه با کالیسیم استفاده گردید تا اکسیژن را مصرف نماید و دی‌اکسیدکربن در محیط ایجاد کند. بعد از پایان زمان انکوباسیون، قطره‌الهای عدم رشد در اطراف چاهک‌ها با خطاهای میلی‌مترا اندازه‌گیری و ثبت شد. داده‌های به دست آمده به وسیله نرم‌افزار نسخه SPSS ۱۵ مورد تجزیه و تحلیل آماری قرار گرفتند. برای مقایسه اورشیا مواد مخلوط مطالعه از آزمون ANOVA یک طرفه و جهت مقایسه دو بین گروه‌های موجود، از آزمون Tukey post hoc تعقیبی در بررسی آماری کمتر از ۰/۰۵ در نظر گرفته شد.

نتایج

نتایج مربوط به میکروبات و انحراف معیار هاله عدم رشد میکروباتی برای هر یک از ۶ محلول مورد آزمایش در شرایط هوازی و بی‌هوتزی در جدول ۱ باین شده است.

شماره‌گذاری شده و 5 میکرولاتری از آنها با استفاده از سپرلاسترول به صورت کور (Blind) در چاه‌های مخصوص خود که از قبیل شماره‌گذاری شده بودند در هر پلیت ریخته شد. مخلوط در کل در 18 چاهک ریخته شد و در مجموع به همه گروه کنترل (آب مقطور استریل) شناخت 108 چاهک در 18 پلیت انجام شد. نتایج مراحل کشت باکتری و ریختن محلول‌های در چاهک در زیر برجسته و در کتاب شعله و شناخت استاتیک انجام شد. سپس پیل‌ها به طور تصادفی به ۲ گروه تقسیم شدند. گروه ۱ (پلیت به صورت هوازی و گروه ۲ (پلیت به صورت بی‌هوتزی (Anaerocult A (در جار بی‌هوتزی همراه با سانتی‌گراد و به مدت ۲۴ ساعت انکوه شدند. برای ایجاد Gas Pak (Merck, Darmstadt, شرایط بی‌هوتزی همراه با کالیسیم استفاده گردید تا اکسیژن را مصرف نماید و دی‌اکسیدکربن در محیط ایجاد کند. بعد از پایان زمان انکوباسیون، قطره‌الهای عدم رشد در اطراف چاهک‌ها با خطاهای میلی‌مترا اندازه‌گیری و ثبت شد. داده‌های به دست آمده به وسیله نرم‌افزار نسخه SPSS ۱۵ مورد تجزیه و تحلیل آماری قرار گرفتند. برای مقایسه اورشیا مواد مخلوط مطالعه از آزمون ANOVA یک طرفه و جهت مقایسه دو بین گروه‌های موجود، از آزمون Tukey post hoc تعقیبی در بررسی آماری کمتر از ۰/۰۵ در نظر گرفته شد.

نتایج

نتایج مربوط به میکروبات و انحراف معیار هاله عدم رشد میکروباتی برای هر یک از ۶ محلول مورد آزمایش در شرایط هوازی و بی‌هوتزی در جدول ۱ باین شده است.
جدول 1- میانگین و انحراف معیار قطر هاله عدم رشد میکروبی گروه‌های آزمایشی در شرایط هوازی و یا هوازی

<table>
<thead>
<tr>
<th>گروه</th>
<th>انحراف معیار +/میانگین</th>
<th>قطر هاله عدم رشد (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل (آب مقطور)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

دانشکده علوم پزشکی رفسنجان
دوره 10، شماره 1، سال 1390
اثر ضدبیکروپی عصاره سیر بر انترکوکوس فکالیس

یکی از معاون‌های رایج در مراقبت‌های اولیه در بیماری‌های مزمن است. این حیاتی عصاره از طریق راهنما مورد استفاده قرار می‌گیرد و به فاصله‌ای بین بیماری‌های مختلف از جمله اسهال و اسهال مزمن کمک می‌کند.

نتایج این بررسی آزمایش‌گاهی اثر ضدبیکروپی هیپوکریت سدیم، کلرگزیدن و عصاره سیر را بر روی باکتری انترکوکوس فکالیس تایید کرد. با این وجود، عصاره خالص سیر، عصاره سیر ۰٪ و مخلوط کلرگزیدن ۲٪ اثر ضدبیکروپی کمتری نسبت به هیپوکریت سدیم ۲۵٪ و کلرگزیدن ۲٪ بر روی باکتری انترکوکوس فکالیس داشتند. پژوهش حاضر از یافته‌های Bakri [۱۹] که نشان دادند عصاره سیر بر روی باکتری انترکوکوس فکالیس اثر دارد، حمایت می‌نماید.

و همکاران در مطالعه خود بین نمونه‌ها کلرگزیدن و هیپوکریت به ترتیب در غلطه‌های ۲٪ و ۲۵٪ به طور چمگیری بارا از بین رفتند. باکتری انترکوکوس فکالیس می‌شوند [۳۱]. این اساس غلطه‌های مورد نیاز برای مقایسه اثر ضدبیکروپی سیر انتخاب شدند و در عین حال ارتباط غلطه‌های مذکور توسط این پژوهش نیز تایید شد.

و همکاران در یک مطالعه بر روی تنی روی اثر ضدبیکروپی در دانش‌دانهای کشیدن شده، نشان دادند که اثر ضدبیکروپی کلرگزیدن ۲٪ بر روی انترکوکوس فکالیس مؤثره‌تر از هیپوکریت سدیم ۲۵٪ است [۲۰]. در مطالعه Davis [۲۰] همکارانش نشان دادند که نتایج از طریق راهنما مورد استفاده قرار می‌گیرد و به فاصله‌ای بین باکتری انترکوکوس فکالیس ۴۰۸۲ (ATCC) در محیط کشت از املاحی‌گاهی مشاهده نشد [۳۱]. برخلاف آن مطالعه، فق، بر پرسته حاضر، اثر ضدبیکروپی هیپوکریت سدیم ۲۵٪ بر روی باکتری انترکوکوس اثر بسیار کمتری نسبت به هیپوکریت سدیم ۵٪ می‌شناسد.

برای به دست آوردن غلطه‌های مؤثر، از دو مطالعه راهنما انجام شد. استفاده گردید. علت احتمالی مشاهده نتایج عدم رشد میکروبی در مطالعه راهنما اول می‌تواند مربوط به غلطه‌های ناپذیرفتن باکتری آلبسین در عصاره سیر باشد. در این مطالعات راهنما مشخص گردید که غلطه‌های بالاتر عصاره سیر در محیط کشت مولرهیستون آگار بیشتری بر روی باکتری موجود دارد. همچنین غلطه‌های مختلف میکروب‌ها در دانه‌های کشت احتمال دارد این تفاوت مربوط به کمیت ماده مؤثر در انواع سیر باشد و همکاران در مطالعه‌های روی اثر ضدبیکروپی عصاره سیر بر میکروب‌ها دانه دادند که سیر جنوب نسبت به سیر شمال و سیر هندیان در غلطه و شرایط پیکسین، اثر ضدبیکروپی قوی‌تر دارد و این اختلاف را به منفی‌بودن شرایط اقیمی می‌پیوندد. کشت این سه گونه سیر نسبت دادند و خاطر نشان ساختند که حداکثر غلطه‌های مهرش به نوع سیر و نوع میکروب بستگی دارد [۲۵].

علت انتخاب عصاره سیر در این مطالعه، وجود تحقیقات متعددی بود که اثر این ماده را بر ضدبیکروپی، قارچ و ویروس‌ها نشان داده بودند [۲۶]. در مطالعه Dorado [۳۱] همکاران نشان دادند که عصاره سیر ۲۵٪ اثر ضدبیکروپی قوی‌تر بر روی میکروب‌های دهانه نشان دادند [۲۱]. در محل‌های کشیدن باعث نابودی و همکاران کاهش قابل توجه استریتکوکاسیته بارا را در اثر استفاده از عصاره سیر ۲۵٪ به عنوان دهان‌شویه به مدت ۵ هفته نشان دادند [۳۱]. همچنین Adetunji [۳۱] نشان داد که عصاره سیر بر روی قارچ کاندیدا...
فکالیس به طور معنی‌داری بیشتر از کلرکیزیدن ۲/۲ بود. ممکن است تفاوت موجود مربوط به روش بررسی اثر ضدمیکروبی و نوع سوش انتخاب شده باشد. مطالعه بر خلاف روش مطالعه حاضر، روي دنده‌های Oncag کشیده شده طراحی شده بود و در مطالعه نوع Davis سوش بررسی شده شا در سوی موجود در پژوهش حاضر تفاوت داشته است.

در پژوهش دیگر که توسط Ayhan و همکاران انجام شد، اثرات تست‌شوده‌های مختلف اندودوتنیک بررسی گردید و نتیجه بدست آمده از بررسی آنها نشان داد که اثر ضدمیکروبی هیپوکلریت‌سدیم ۱/۲۵٪ به طور چشمگیر مؤثرت از کلرکیزیدن ۲/۲ است [۲۳۱]. نتیجه حاصل از تحقیق آنها به مطالعه حاضر همخوانی دارد.

و همکاران نشان دادند که اثر کلرکیزیدن Gomes هنگامی که با کلریم هیدروکسید مخلوط می‌شود به طور معنی‌داری کاهش می‌یابد [۲۳۲]. زیرا کلرکیزیدن در pH محدوده ۵ تا ۷ پایدار می‌ماند و با افزایش مقدار بیشتری از مولکول‌های غیرپروتوکسی کلرکیزیدن وجود دارد. همچنین کلرکیزیدن در pH بالا رسب می‌کند و ممکن است به صورت یک ماده ضدمیکروبی عمل نکند [۲۳۳].۲۴ در مطالعه حاضر نیز مخلوط کلرکیزیدن ۲/۲ و عصاره خالص سیر، اثر سنگ‌یسی‌نتی نداشت و اثر ضدمیکروبی هر یک از این مواد کاهش یافت که این موضوع را می‌توان با تغییرات اختیاری pH ناشی از مخلوط مواد گردید. همچنین از انجا که حمایات ضدمیکروبی یک ماده در محیط کشت به طور مستقیم مربوط به توانایی انتشار آن در محیط مولر هیپنتون آگار

نتیجه‌گیری

با نظر گرفتن نتایج حاصل، عصاره سیر بر باکتری انتروکوکوس فکالیس در شرایط آزمایش‌گاهی در محیط هوازی و بی‌هوازی مؤثر می‌باشد، ولی در مقایسه با کلرکیزیدن ۲/۲ و هیپوکلریت‌سدیم ۲۵٪ اثرشتر کمتری دارد. برای مقایسه دقیق اثر ضدمیکروبی عصاره سیر با دیگر موادشده‌های داخل کانال، نیاز به استفاده از مایع مؤثر سیر به صورت خالص می‌باشد.

تشکر و قدردانی

بدنپستی از معاونت مهندس اموزشی و پژوهشی دانشگاه علوم پزشکی رفسنجان به علت تأمین هزینه‌های این پژوهش و همچنین از آقای غلامرضا کرمی جهت همراهی در امور ازمایش‌گاهی، تقدیر و تشکر می‌شود.

مجله دانشگاه علوم پزشکی رفسنجان

دوره ۱۰، شماره ۱، سال ۱۳۹۰
References

[16] Durairaj S, Srinivasan S, Lakshmanaperumalsamy P. In vitro Anti-bacterial Activity and Stability of...

Comparison of the Antimicrobial Effect of Garlic Extract with two Intracanal Irrigants on Enterococcus Faecalis

Z. Kazemizadeh¹, M. Tashakori², M. Rezaeian³

Received: 03/04/10 Sent for Revision: 07/06/10 Received Revised Manuscript: 22/08/10 Accepted: 28/08/10

Background and Objectives: It is very important to remove the microorganisms in the root canal before obturation. One of the causes of endodontic treatment failures is the existence of the bacteria responsible for resistant infections, including Enterococcus Faecalis. The aim of this study was to compare the antibacterial effect of the garlic extract with two intracanal irrigants on Enterococcus Faecalis.

Materials and Methods: In this in-vitro study, the method of Well Agar Diffusion was used to compare the anti-bacterial effect of pure garlic extract (100%), garlic extract 80%, chlorhexidine 2%, sodium hypochlorite 5.25% and combined chlorhexidine 2% with pure garlic extract. Eighteen plates of Muller-Hinton agar were inoculated with E.faecalis. Each plate had 6 wells for test solutions and one of them was for sterile distilled water as the control. The prepared plates were distributed into aerobic (n=9) and anaerobic (n=9) groups, then incubated at 37°C for 24 hours. After that, the diameter of the zones of microbial inhibition around every well was measured and recorded.

Results: Our results demonstrated that Sodium hypochlorite 5.25% was more effective compared with the other antimicrobial materials in both aerobic and anaerobic groups. This difference was statistically significant (ANOVA, p<0.05). The most effective antimicrobial agents in aerobic and anaerobic conditions were in this order sodium hypochlorite (5.25%), chlorhexidine 2%, pure garlic extract, combined chlorhexidine 2% with pure garlic extract and garlic extract 80% respectively (p<0.05). However, the difference between pure garlic extract and combined chlorhexidine 2% with pure garlic extract in aerobic condition was not significant.

Conclusion: The results showed that garlic extract is effective on Enterococcus Faecalis in both aerobic and anaerobic conditions; nevertheless it has less efficacy than chlorhexidine and sodium hypochlorite.

Key words: Garlic, Chlorhexidine, Sodium hypochlorite, Enterococcus faecalis

Funding: This research was funded by Rafsanjan University of Medical Sciences.

Conflict of interest: None declared.

Ethical approval: The Ethics committee of Rafsanjan University of Medical Sciences approved the study.

1- Assistant Prof., Dept. of Endodontics. Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
Corresponding Author, Tel: (0391) 8220013, Fax: (0391) 8220008, E-mail: z_kazemizadeh@ums.ac.ir
2- Assistant Prof., Dept. of Laboratory Sciences, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
3- Associate Prof., Dept. of Social Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran