جلد 18، شماره 12 - ( 12-1398 )                   جلد 18 شماره 12 صفحات 1270-1286 | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه علوم پزشکی تبریز
چکیده:   (547 مشاهده)
چکیده
زمینه و هدف: ماشین بردار پشتیبان (Support vector machine; SVM) به­عنوان یک روش آماری قوی و کارآمد در تشخیص و پیش­بینی پیامدهای بالینی بر اساس ترکیباتی از متغیرهای پیش­بین کاربرد دارد. هدف این پژوهش، استفاده از SVM برای تشخیص محدودیت عملکردی بیماران دیابتی و بررسی میزان صحت این تشخیص می­باشد.
مواد و روش­ها: این پژوهش توصیفی بر روی 378 بیمار دیابتی مراجعه کننده به مراکز دیابتی اردبیل و تبریز در سال 94-1393 انجام شد. جهت طبقه­بندی بیماران دیابتی از لحاظ وضعیت محدودیت عملکردی بر مبنای متغیرهای دموگرافیک و بالینی از SVM با تابع هسته RBF) Radial basis function;) و روش اعتبارسنجی آموزش و آزمون استفاده شد. ارزیابی بر اساس شاخص­‌های تشخیصی شامل حساسیت، ویژگی، صحت و سطح زیر منحنی Receiver operating characteristic; ROC)) انجام شد.
یافته­ها: نتایج حاصل از مدل SVM نشان داد که صحت طبقه­بندی، حساسیت و ویژگی مدل SVM در افتراق و تشخیص صحیح وجود محدودیت عملکردی در بیماران دیابتی به ترتیب برابر 99%، 100% و 97% بود. سطح زیر منحنی ROC برای قدرت تشخیصی این مدل 98/0 بود.
نتیجه­گیری: در این مطالعه SVM برای طبقه­بندی وضعیت محدودیت عملکردی بیماران دیابتی استفاده شد که نتایج نشان­گر صحت و دقت مناسب مدل بود. با توجه به اهمیت طبقه­بندی صحیح پیامدهای پزشکی بر اساس ترکیباتی از متغیرهای پیش­بین، استفاده از روش­هایی مانند SVM که قادر به یافتن چنین ترکیبات بهینه­ای هستند، می­تواند مفید باشد.
واژه­های کلیدی: داده کاوی، ماشین بردار پشتیبان، محدودیت عملکردی، طبقه­بندی، تابع هسته
 
متن کامل [PDF 574 kb]   (125 دریافت) |   |   متن کامل (HTML)  (198 مشاهده)  
نوع مطالعه: كاربردي | موضوع مقاله: آمار و اپيدميولوژي
دریافت: 1397/10/5 | پذیرش: 1398/9/27 | انتشار: 1399/1/1