مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره هفتم، شماره اول، بهار 1387، 56-69

مقايسه اثر توكسيتين ليپولي سيكاريد تمديدي از باكتري هاي گرم منفی از جمله کلاميديا تراكوماتيس بر اسپرم انسانی

دکتر حمید حکیمی، دکتر ابولقاسم مصاواتی، دکتر فرشید فرح‌بخش، دکتر سیدمهدی سیدمیرزایی، دکتر غلامحسین حق‌شناس، دکتر ادی‌یا ای‌ی

چکیده
زمینه و هدف: کلامیدیا تراكوماتیس به عنوان یکی از شایع‌ترین علل بیماری‌های مقا osgانی خصوصاً در دنیای غرب مطرح است. این باکتری با به‌عوون یکی از علل ناررایی در زنان نقش دارد که ارتقاء آن با ناباروری مردان بهبود است.

علاوه بر کلامیدیا، بعضی از باکتری‌های خانواده آنتربرکتیاسا از قبیل ایکولوژی‌کلیسیلا و سراسیلا نیز در اختلال عملکرد اسپرم انسانی مطرح می‌باشند. هدف از این مطالعه مقایسه اثر توكسيتين ليپولي سيكاريدیای این باکتری‌ها بر اسپرم انسانی در شرایط ازامیشگاهی می‌باشد.

مواد و روش‌ها: در این مطالعه ازامیشگاهی 50 و 25 میکرو‌گرم در میلی لیتر ليپولي سیكاریدهای تجاری ایکولوژی‌کلیسیلا و سراسیلا و 20 میکرو‌گرم در میلی لیتر ليپولي سیكاریدکلامیدیا ساخته شده و در گروه کنترل در امیشگاه سوسیسیسیوس اسپرم انسان با غلظت 10x10⁶ اسپرم در میلی لیتر که به وسیله تپه شهید به مدت 6 ساعت در انکوباتور با دمای 37 درجه سانتی‌گراد و دی‌اکسید کربن 5%percoll gradient روش انگه‌داری شدند. پس از طی این مدت میزان مرگ و حیات اسپرمها با استفاده از ارزیابی HOS تایید شد.

یافته‌ها: همیشه از ليپولي سیكاریدهای تجاری ایکولوژی‌کلیسیلا و سراسیلا با غلظت 50 میکرو‌گرم در میلی لیتر تأثیر منفی بر حیات اسپرمها نداشت در حالی که ليپولي سیكارید کلامیدیا با غلظت 50 میکرو‌گرم در میلی لیتر قادر به مرگ تعداد قابل توجهی از اسپرم‌ها شد که نسبت به گروه کنترل معنی‌دار بود (P<0.05). نتایج گیری: علوفنهای کلامیدیاپای اگر به عنوان محصول روغن‌می‌نماید و بدون علامت حساسیت انجام نتبهای این مطالعه نشان می‌دهد که این باکتری در شرایط ازامیشگاهی حدودی پاسخ بار قوی‌تر از باکتری‌های متعلق به خانواده آنتربرکتیاسا که در این مطالعه مورد استفاده قرار گرفته‌اند قادر به مرگ اسپرم‌های انسانی می‌باشد. این مطالعه و دریگر مطالعات مشابه موثر اندازه کلیدی کلامیدیا تراكوماتیس به عنوان یکی از عوامل علوفنهای ناباروری مردان می‌باشد.

واژه‌های کلیدی: ليپولي سیكاریدی، کلامیدیا، انتروباکتریا، اسپرم، ناباروری مردان

1- استادیار گروه آموزشی میکروپولیزی دانشگاه علوم پزشکی رفسنجان hamid.hakimi@gmail.com
2- استادیار گروه آموزشی روان‌پزشکی دانشگاه علوم پزشکی رفسنجان
3- استادیار گروه آموزشی بیهوشی دانشگاه علوم پزشکی رفسنجان
4- استادیار گروه آموزشی داخلی دانشگاه پزشکی پردیس دانشگاه علوم پزشکی رفسنجان
5- استادیار گروه آموزشی میکروپولیزی دانشگاه پزشکی دانشگاه علوم پزشکی رفسنجان
6- دانشیار گروه آموزشی میکروپولیزی دانشگاه شیفیل انگلستان
مقدمه
نقش عفونت‌های باکتریایی از جمله کلامیدیا تراکوماتسیس در ایجاد نابودی خصوصاً در زنان به اثبات رسیده است. باکتری‌های چهارنفره قادر به تجمیل و تحریک گردان اسیرم می‌باشند. باکتری‌های کرم منفی لیبیولی ساکارد در اندوتوسپین، یکی از ساختمان‌های عصبی و تحریک کننده سیستم ایمنی می‌باشند که در غشاء خارجی دیواره سلولی قرار گرفته است. با چندین مکانیسم در حیات و LPS سدی باکتری‌های گرم منفی نقص دارد. اولاً، LPS سدی است که صرفه در مقابله باکتری‌های هیدروفلیک با زنگ نفوذ‌پذیر می‌باشد. ثانیاً، این نقص مهمی می‌گیرد که در تقابل با میزانهای LPS بی‌خانمان لیپوسخیم‌هایی به‌کار می‌رود که حاوی اکوکول‌های تکراري Ag-O (۱) می‌باشد. این آگلاسکاردهای مثبت مشخصی (Core region) اولیوکلاستر می‌باشد. ۱۲.

Finished می‌باشد و کاملاً باکتری‌گرم منفی به‌کار می‌رود. LPS نیز با LPS اسپورتی‌های شیکاگو دارد. انتخاب آخرین LPS LPS با باکتری‌های اکسپون‌های بین‌نواحی LPS می‌باشد. در این مطالعه تأثیر Halibut لیبرتاتوری و اسپورت اسپورتی‌های شیکاگو از طریق استخراج این مردان و نسبی باکتری‌های LPS می‌باشد. ۷. LPS به‌کار می‌رود.

سپتی‌سیم مزینت و عفونت‌های دستگاه ارادی شناخته شده است [۱]. با استفاده از تکنیک‌های موردنده ایجاد عفونت‌های باکتریایی در ایجاد عفونت‌های ارادی و گاهی در ایجاد نابودی نقش دارند اما این که باکتری‌ها قادرند آسیب‌زا یکانی بر این امر انواع خاصی یافته و این سابقه دارنده است که باعث دادن به آن هنگام مطالعه می‌باشد.

مواد و روش‌ها
در این مطالعه ازشیم‌های کلامیدیا Hallamshire (شیکاگو) که به اساس استانداردهای سازمان جهانی بهداشت [۱۱] نمایندگی داده دانش‌آموزی و با ارائه South Research در نظر گرفته شدند ارزیابی احتمالاتی خاصی مصوب است. ۱ / از هر ۱ Ethics Committee, project number 02/337).

Percoll می‌باشد. ۱۲۱
لیپوسیت ساکارید تجاری کلیمی‌ها موجود بود قرار عفونی اما
غیرفعال (از لحاظ متانولیشک) کلیمیداتراکوماتین
در (Serovar Serovar Lymphogranuloma Venerum (LGV)
محیط آزمایشگاهی و با کشک مکرر و آبی دچار از
200 فلاک کشت اختصاصی 15 یالی لیتر سلول‌های
نئوپدش [12]. محیط کشت اختصاصی جهت رشد
Mc Coy Minimum Essential Medium Eagle (MEM)
اسبی از لیپوسیت ساکارید جدید شد [15] در این روش ایجاد
لیپوسیت ساکارید به کمک 8 سی سلول‌های اورام‌گرایی
و سانترپنیوس با دقت 1500 دور در دقیقه به مدت یک ساعت
در دمای ۴ درجه سانتی‌گراد از سلول‌های
Mc Coy سوپراسیون مناسب دارد و EBs
در مسررتعبیه شده در 2/5 لیتر مایع فیل ۹۰% به مدت
تبسیعی در دمای ۶۰ درجه سانتی‌گراد با همین مغناطیسی
مخلوط شدن. در محلول برحسب ۴ میلی‌لیتر اثر و 2/5 میلی‌لیتر
کلرریک مخلوط اضافه شد و به مدت یک ساعت در دمای
اتاق با همین مغناطیسی مخلوط شد. سپس با سرعت
g × 10000 در دقیقه به مدت تیم سوپراسیون تریفیوز شدند.
محلول حاصله در استوانه ۵۰ درجه سانتی‌گراد رسوپ داده
شد. رسوپ نهایی در استوانه سرد شستش داده شد و در
دستگاه اتوماگ تخم شد و در ۲۰ میکرویول محلول
SP/۱۰% تری اتیل آمین حل شد. جهت اثبات جداسازی
موقتات آمیزه لیپوسیت ساکارید، ۲۰ میکرویول محلول حاصله
را بر روی زل و پیل آگرلیم آمیزه ۱۴% با وتنز
۱۰۰۰-۱۵۰۰ عدد داده و پس از اتمام کار در منوال و اسید استیک خشک و
Limbus Amebocyte را در آزمایشگاه بیشتر به عمل آمده. به کمک
رمزیان کمی Lysate (LAL) (Cambrex Biosciences, UK)
لیپوسیت ساکارید حاصل محاسبه شد.

امکانات

لیپوسیت ساکارید در زمان صرف و قبل از مجاورت با
لیپوسیت ساکارید به کمک عضلات +8/7 200/199 بود (کلیه اعداد از علائم
و همچنین نمودار نشان دهنده انحراف معیار است. 6 ساعت پس از انکوباسیون، میزان مرك اسپرم در
نتایج

یافته‌های 6×10⁵ اسپرم در میلی‌لیتر ریخته شد. به یک اندور
1/0 میکرویول در میلی‌لیتر (بر اساس تجاری قبلی) از

مجله دانشگاه علم پزشکی رفسنجان
37، شماره 7، سال 1387
دوره 7، شماره 7، سال 1387

مقاومت ارتوکسیسی لیپوسیت ساکارید...
گروه کنترل تغییر قابل ملاحظه‌ای نداشت (5/0±0)/%. آنها درصد قابل توجهی از اسپرم‌هایی که در مجاورت 1/0 میکروگرم در میلی لپس از اسپرم‌های ساکارید کلامیدیا قرار گرفته، بودند. درصد (1/0 ±0)/% در صورتی که میزان اسپرم در این دوره‌های با فلزات‌های 2/01/0، 2/0/1/0 و 1/0 میکروگرم در میلی لپس از اسپرم‌های ساکاریدهای تجاری ایکولوای (5/0±1/0)/% کلسیل‌لا (5/0±1/0)/% و سراشیا (5/0±1/0)/% تغییر معنی داری پیدا نکرد (نمودار 1). گروه PMB به صورت معنی داری کاهش یافت (کلسیل‌لا 1/0±4/0/% و ایکولوای 2/0/1/0±1/0)/%). درصد اسپرم‌های مربوط به این فرهنگ با PMB و EBSS تغییر قابل توجهی در مقایسه با گروه کنترل بعد از یک ساعت نداشت (6/0±1/0)/% و (6/0±1/0)/%.

نمودار 2- توزیع فراوانی نسبی مرگ اسپرم‌های میلی لپس در میکروگرم نسبت به 4 ساعت مجاورت با 1/0 میکروگرم در میلی لپس اسپرم‌های ساکاریدهای تجاری ایکولوای و کلسیل‌لا و سراشیا. * اختلاف معنی دار.

نمودار 3- توزیع فراوانی نسبی مرگ اسپرم‌های میلی لپس در میکروگرم در میلی لپس اسپرم‌های ساکارید کلامیدیا و 1/0 میکروگرم در میلی لپس اسپرم‌های ساکاریدهای تجاری ایکولوای به عنوان نمونه در حضور و غیاب 100 میکروگرم در میلی لپس.
بحث

ارتباط بین عفونت‌های باکتریایی و ناباروری مردان از نظر محققینی که در زمینه باوری و عفونیت فعالیت می‌کنند حائز اهمیت می‌باشد. Buxton و Matthews از نظر محققینی که در زمینه باوری و عفونیت فعالیت می‌کنند بودند که ناباروری و باکتری‌های جدیدی از گردن رحم مردان به بین بردن اسپرم‌های انسانی می‌باشد [16]. در سال 1971 Teague و همکارانش باکتری‌ایکولیز را که TRی ترشحات گردن رحم جد نیوده و با اسپرم انسانی مجاری کرد و نشان دادند که این باکتری اثر توسکیسی اسپرم‌ها دارد [16]. مطالعه مشابهی نیز توسط Diemer انجام شد و با تأثیر منفی ایکولیز در میزان تحرک اسپرم صحح گذاشت [17].

صلح جنجال [17]

لیپوپاسکارید ایکولیز با گلیت 50 میکروگرم در میلی لیتر بین از یک ساعت مجاورت 80 تا 82 اسپرم‌های انسانی را از بین متوقف کرد [18]. اما این که کلاستر دیامی اثر مستقیم بر ایکولیز اسپرم انسان و نتیجه ندارد. در انزیم‌های ایکولیز این آزمایشگاهی از اتکای اسپرم‌های مقاوم به این می‌باشد. این امتیازات انجام شده بر این می‌باشد که این ایکولیز بیشتر در سال 1988 نشان دادند که

Dumoulin

اسپرم انسانی با رسانه‌های میکروگرم در میلی لیتر به باکتری‌ایکولیز منتقل می‌کند. در مطالعه آزمایشگاهی ایکولیز اسپرم‌های انسانی را از بین می‌راهند. این که این می‌باشد.

Whittingham’s می‌باشد [17] و و در حالی که با وسط در مطالعه هوس این که این می‌باشد.

Makler

ساده ترکیب اثر ایکولیز اسپرم‌های انسانی را از بین می‌راهند. این که این می‌باشد. اختلاف در ساختار بیوشیمیایی لیپوپاسکارید‌ها مورد استفاده از این مطالعه نتایج پیشنهادی کننده اختلاف در غلظت‌های با کار رفته، باشد. شاهد و وجود دارد که لیپوپاسکارید‌های گلیت به عضوی بکار رفته

C14-21

تویل و غیرعمولی از اتکای جرب (C14-21) به صورت و دیولکورنس مونوفورمالین سی این دارن در شرایط که لیپوپاسکارید باکتری‌های دیگر بین 80 تا 80 A منطقی است. لیپوپاسکارید به کن منحصربه

فرآ تری - سکاراکردن منطقی به لیپوپاسکارید A دارد [23] همچنین
لیپوساکارید این باکتری فاقد O-chain است که ممکن است کلیل احتیالی دیگری بر غلافی پیش بینی نماینده و در نتیجه سیر مزمن و بیماری نمونه، بیماری‌های حامل از غفونت کلامیدی می‌باشد. لیپوساکارید اکولودارای لیپوساکارید های hexa-acyl در این لحاظ با لیپوساکارید کلامیدیا نتاو دارد. لیپوساکارید کلسیلیا از جمله سول‌های تولید در و روابط‌های سلولی و تولید آنزیم‌های 16-16 کربنی که یافته‌تنبیه‌برند A دیفسیرولبند شده می‌باشد. ساختار الیزایی لیپوساکارید سراسرا نیز از لحاظ وزن مولکولی، وجود گلگرایی‌های اسیدی، گالاکتوپورین‌های بسیار و تابوپاته‌های کلیسیلا و اکولیدارای دارد[۱۰].

علو له نتایج این شد، نوع و بی‌گی‌های سول میزان و شرایط محیطی که سول میزان با باکتری‌های

References

Comparison of the Toxicity Spermicidal Effect of Some Gram Negative Bacteria's Lipopolysaccharides, Including that from Chlamydia Trachomatis on Human Sperm

H. Hakimi PhD 1, A. Mosavat MD 2, F. Farahbakhsh MD 3, S. M. Seyed Mirzaei MD 4, G. H. Hasanshahi PhD 5, A.R. Eley PhD 6

Received: 26/06/07 Sent for Revision: 30/10/07 Received Revised Manuscript: 12/05/08 Accepted: 28/05/08

Background and Objective: Chlamydia trachomatis infection is one of the most common sexually transmitted diseases especially in western countries. While there is agreement on the manifestations and, in particular, the negative effects of Chlamydia infection on female fertility, the role of this organism in male fertility is still controversial. In addition to Chlamydia, some bacteria belong to the enterobacteriaceae family, including; E.coli, Klebsiella, and Serattia have been suggested in human sperm dysfunction. The purpose of the present study was to compare the in vitro toxic effects of lipopolysaccharides (LPSs) extracted from these bacteria on human sperm.

Materials and Methods: In this laboratory study, 5 × 10^6 sperm/ml of prepared sperm using percoll gradient method were treated with 0.1, 1, 10, 25, and 50μg/ml of commercial LPSs from E.coli, Klebsiella, and Serattia and 0.1μg/ml of lab-made Chlamydia LPS at 37°C in 5% CO₂ for 6 hours. After 6h incubation the sperm viability was measured using the HOS test.

Results: Commercial LPSs used in this study had no significant detrimental effects on human sperm at lower than 50μg/ml while Chlamydia LPS at 0.1μg/ml showed a significant toxic effects against sperm compare to control group (38.6±1%, p<0.05).

Conclusion: Although, chlamydia infections are almost clinically chronic and asymptomatic, our findings showed that the in vitro spermicidal activity of this bacterium is about 500 times more potent than the LPS of E.coli, Klebsiella, and Serattia. These results and the findings from the other relevant studies confirm the key role of C.trachomatis as one of the infectious factors causing male infertility.

Key words: Lipopolysaccharides, Chlamydia, Enterobacteriaceae, Sperm, Male Infertility

Funding: This research was funded by Rafsanjan University of Medical Science and conducted at the University of Sheffiled.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Rafsanjan University of Medical Sciences and Sheffiled University jointly approved the study.

1- Assistant Prof., Dept. of Microbiology, Faculty of Medicine, University of Medical Sciences, Rafsanjan, Iran (Corresponding Author) Tel: (0391) 5234003, Fax: (0391) 5225209, E-mail: hamid.hakimi@gmail.com
2- Assistant Prof., Dept. of Pediatrics, Faculty of Medicine, University of Medical Sciences, Rafsanjan, Iran
3- Assistant Prof., Dept. of Anesthesiology, Faculty of Medicine, University of Medical Sciences, Rafsanjan, Iran
4- Assistant Prof. Dept. Internal Medicine, Faculty of Medicine University of Medical Sciences, Rafsanjan, Iran
5- Assistant Prof., Dept. of Microbiology, Faculty of Medicine, University of Medical Sciences, Rafsanjan, Iran
6- Senior Lecture in Medical Microbiology at the University of Sheffield, UK