مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره ششم، شماره چهارم، زمستان 1386، صفحات 227-247

اثر مصرف خرکان کلیلی و سیستمی A بر یادگیری متعاقب تخریب دو طرفه نواحی خلفی جانین CA1 در موش صحرایی

محمد رضا آفرینی، دکتر احمدعلی معاضدی، دکتر مهدی عباسزاری، دکتر وحید شیبانی

چکیده
زمینه و هدف: مطالعات پیش‌آمده در زمینه ریمان بیماری‌های شناختی نشان‌دهنده افزایش آنزیم‌های خرکان و نشان‌دهنده کاهش نشان‌دهنده کاهش فضاهای صحرایی خلفی جانین CA1. این مطالعه با هدف بررسی اثرات تجویز خرکان سیستمی و کلیلی A بر یادگیری حافظه درحیاتی دارد.

مواد و روش‌ها: این مطالعه تجريبي، یادگيری و حافظه‌سالم با تعداد 64 سر موش صحرایی نر بالغ نزاد با NMRI مي‌باشد. 272 گرم با استفاده از دستگاه شاتل باکس ارزيابی شد. موشها به هشت گروه (مساوی) تقسیم شدند. در گروه كنترل هیچ گونه تجویزی صورت نگرفت. در گروه شاهد، آب مصرف تجویز دهانی شد. در گروه شاهد جراحی، فقط الکترود به نواحی خلفی جانین CA1 هیپوکامپ بی صورت دو طرفه وارد می‌شد. در گروه آزمایش یک نواحی و مسئله جریان الکتریکی تخریب شدند. در گروه تحت تجویز (آب مصرف گروه) و در گروه تحت تجویز (آب مصرف کلیلی) گروه هفتم (تجویز A) و تیمی A (تجویز A) انجام شد. تجویز‌ها در حجم 10 میلی لیتر بر کیلوگرم به صورت دهانی و به مدت یک هفته هر روز و یک ساعت قبل از هر آزمایش صورت می‌گرفت.

یافته‌ها: نتایج نشان داد گروه شاهد جراحی و گروه تخریب اختلالی معنی‌داری از نظر مرحله به خاطر آوری لول دوم و جلو دارد. 0.05). همچنین تجویز خرکان کلیلی به صورت توانی و پایین‌ترین نواحی خلفی جانین CA1 تجویز خرکان کلیلی و سیستمی A به دقت CA1 بهتر نمی‌دهد. (p/0.05). نتایج گیری: تخریب موضعی ناحیه CA1 هیپوکامپ به طور دو طرفه سبب کاهش حافظه‌سالمی احتمالاً غیرفعال می‌شود. به نظر می‌رسد که تجویز توانی و سیستمی A به طوری که در نواحی CA1 بهبود دهند.

واژه‌های کلیدی: هیپوکامپ، سیستمی، کلیلی، CA1، حافظه‌سالمی، تخریب

1- نویسنده مسئول: کارشناس آموزشی، مرکز تحقیقات علوم انسانی کرمان، دانشگاه علوم پزشکی کرمان
Reza. Farinesh@gmail.com
Tel: 021-22119010. Fax: 021-22112212
2- استادیار گروه آموزشی دانشگاه، دانشگاه شهید چمران اهواز
3- استادیار گروه آموزشی دانشگاه، دانشگاه شهید بهشتی تهران
4- استادیار گروه آموزشی دانشگاه، دانشگاه علوم پزشکی کرمان
مقدمه

مطالعات متعددی در رابطه با نقش قسمت‌های مختلف مغز از جمله هیپوکامپ، آمیگدال و تالاموس بر روی حافظه و یادگیری انگیزه است. در این مطالعات، هیپوکامپ یکی از ساختارهایی مبتنی که نقش مهمی در حافظه و یادگیری دارد [1-2]. هیپوکامپ و ساختارهای مجاور آن در ارتباطات کوتاهمدتی و طولانیمدتی با قسمت‌های زیادی از قشر مخ ساختارهای اصلی دستگاه لیمفاکیک یعنی آمیگدال، هیپوتالاموس، بیرون، احساس پستی و قشر جلوی پیشانی می‌باشند [3-4]. مشخص شده است نخست نوع فرآیندهای هیپوکامپیکی این سطح در حافظه و یادگیری به مدل همکاری و همچنین تحریک یک طرفه این تنش‌ها مناسب با وسعت تحریک موجب بروز اختلالات مشابه وی با درجه کمتری در اندازه و یادگیری می‌گردد [5]. پیشتر اطالعات درباره عملکرد هیپوکامپ از مطالعات تحریکی شامل تحریک‌های زننیکی، جراحی و دارویی حاصل شده است [6].

فستاندیل کولین (ستین) علاوه بر این که از ترکیبات مهم غشاء سلولی می‌باشد به عنوان یکی از میانجی‌های عصبی است. کولین در مغز دارای اهمیت است [7]. مشخص شده که منابع کولینی که به عنوان اصلی کولین استفاده کرد و تحریک دهانی لیسین سبب افزایش یادگیری می‌شود [7-8]. همچنین گزارش‌هایی که سیستم عصبی کولینرزیک نقش مهمی در فعالیت‌های ادراکی و شناختی نوری حافظه و یادگیری و عهده دارد و یکی از این گزارشات در انسیستیون کولینرزیک حافظه کاهش می‌یابد [7-8].

از طرفی گزارشی وجود دارد که نشان می‌دهد لینیوکنیک اسبید در سلول‌های موربین سیتال از طریق فعل گردن زن VAcH کولین به یکپارچه سیتال همچنین (VAcH کولین) به یکپارچه سیتال و ساختارهای سنن آنیمی است. کولین ترانسفر دارد و بدن روش افزایش سنن و ترشه است. کولین را سبب می‌شود [9].

جدل دانشگاه علوم پزشکی رفسنجان

دروه ۶، شماره ۴، سال ۱۳۸۵

۲۲۸

ان مصرف حوراکی لیسین و ویتامین A
خلفی جانی CA1 هیپوکامپ تخریب نشد (شاهد جراحی). در گروه چهارم (گروه تخریب) نواحی خلفی جانی CA1 هیپوکامپ به صورت دو طرفه تخریب شد. در گروه پنجم (تخریب آب مکثیر) پس از ایجاد ضایعه هم‌زمان با مقدار 100 میلی‌گرم بر کیلوگرم (ساخت کارخانه مرکز آلمن) با قابلیت انحلال در آب تجویز دهانه‌گردید. با توجه به تاثیب که از آزمایشات بالینی به دست آمده بود (14-12) در گروه ششم بس از عمليات تخریب هم‌زمان با مقدار 100 میلی‌گرم بر کیلوگرم (ساخت کارخانه مرکز آلمن) با قابلیت انحلال در آب تجویز دهانه‌گردید.

در گروه هفتین پس از عمليات تخریب هم‌زمان با مقدار 8000 واحد بر کیلوگرم (ساخت کارخانه مرکز آلمن) با قابلیت ایجاد میسیل در آب و در گروه هشتم پس از عمليات تخریب مقدار تأمینی (مقدار 120 میلی‌گرم بر کیلوگرم و میزان‌های 8 واحد بر کیلوگرم) به روش گاز تجویز دهانه‌گردید. در تمام موارد حجم تجویز 100 میلی‌گرم به روش گاز تجویز دهانه‌گردید. در نظر گرفته شد.

برای جزییه و تحلیل آماری داده‌ها از آزمون آنانیز واریانس (ANOVA) دنبال شده با پس آزمون توکی - کرامر نشان داد که بین گروه‌های کنترل، گروه شاهد و گروه شاهد جراحی نتایج معنی‌داری از نظر زمان تأخیر از پس از جراحی بی‌خودی قابل توجه از اعمال شوک و نیز مراحل بین خطرنامه اول، دوم و سوم وجود ندارد. بنابراین تجویز دهانه‌گردی با گاز کارگری و حافظه احترزازی غیر فعال را تحت تأثیر قرار نمی‌دهد (جدول 1).
نتایج نشان داد می‌توان گروه ترکیب با گروه ترکیب اب مکثر تفاوت معنی‌داری مشاهده نشد (جدول 1). بنابراین از گروه ترکیب، آب مکثر جهت مقایسه‌های بعدی استفاده شد.

جدول 1- نتایج حاصل از پارامترهای ارزیابی شده به دستگاه ناشا با کاس بین گروه‌های کنترل، شاهد، جراحی ترکیب و (ترکیب، آب مکثر)

| میانگین زمان تأخیر در ورود به جمعه تاریک یک ماه (ساعت) به حساب تأخیر | میانگین زمان تأخیر در ورود به جمعه تاریک قبل از اعمال پس از شوک برحسب تأخیر | میانگین زمان تأخیر در ورود به جمعه تاریک 10 دقیقه قبل از اعمال پس از شوک برحسب تأخیر | کنترل | شاهد | جراحی ترکیب | ترکیب، آب مکثر | مکثر |
|---|---|---|---|---|---|---|---|---|

مقایسه میانگین زمان تأخیر در غضروف و سوم تفاوت معنی‌داری وجود ندارد (جدول 2). میانگین زمان تأخیر در ورود به جمعه تاریک در ابتدا و بدون ترکیب، آب مکثر کاهش می‌یابد.

(مدل 1.)

آزمون تکیه گو هرم چهارنفر شان داد که بین گروه تجویز مقادیر تأم و کنترل و گروه آب مکثر و گروه ترکیب، آب مکثر از نظر مراحل به خاطروری دوم و سوم، اختلاف معنی‌دار وجود دارد (p<0.05). بر این اساس در گروه ترکیب مقادیر تأم و گروه آب مکثر، مقادیر تأم و کنترل از نظر مراحل به خاطروری دوم و سوم، اختلاف معنی‌دار وجود دارد. نتایج هم‌چنین نشان داد که بین گروه ویتامین A و گروه ترکیب، آب مکثر کاهش می‌یابد.

(مدل 2.)
بحث

نتایج حاصل از این پژوهش نشان داد که میانگین زمان‌ها تأخیر در ورود به جعبه تاریک در مرحله به خاطراتی اول بین گروه تخریب و گروه شاهد چراپی دارای اختلاف معنی‌داری نبودند. بر این اساس در گروه تخریب میانگین زمان‌های تأخیر در ورود به جعبه تاریک 10 و 30 ثانیه بوده از عملیات شکی کاهش نشان داد. این یافته نشان می‌دهد تخریب نواحی CA1 هیپوکامپ به صورت دوطرفه باعث یک کاهش حافظه احترازی غیرفعال می‌شود. در این زمینه Martinez و همکارانش (2002) گزارش دادند که تخریب نواحی CA3 و Hیپوکامپ سبب کاهش پادگنی و حافظه احترازی غیرفعال می‌شود. این گزارش دادند که هیپوکامپ نقش ضروری در مرحله اکتساب پادگنی احترازی در دستگاه شانل باکس ندارد، اما نقش بسیار مهمی در به خاطراتی اطلاعات و امکان‌های قبیل عده دارد [15]. همچنین Chaichenko (1984) گزارش داد که تخریب دوطرفه هیپوکامپ یکی موش صحرایی منجر به کاهش پادگنی و حافظه احترازی غیرفعال موش در دستگاه شانل باکس می‌شود [16].

مطالعه حاضر نشان داد که تجویز لستین به تنها بی به صورت غیرعمدی در ساخ افراز حافظه احترازی غیرفعال پس از تخریب موی دارنیه CA1 می‌شود. در رابطه با اثرات لستین بر روی پادگنی و حافظه کارشان پیش از وجود Dارد و همکارانش (1985) گزارش دادند که تجویز فسفاتید کولین و کولین به موش‌های سالم علی‌رغم این که سطح غلظت کولین مغذ در نواحی هیپوکامپ و مغز جلویی را افزایش می‌دهد، در حافظه احترازی غیرفعال اثری ندارد. این گزارش دادند که لستین می‌تواند پادگنی و حافظه غیر فعال را در موش‌های کنار قهوه دارند و فسفاتید کولین باید در نواحی هیپوکامپ به دستیاری به‌طور خریداری سطح کولین و فسفاتید کولین باعث می‌شود [17].

نمودار 3- مقایسه گروه‌های (تخریب + بی‌مغز، گروه (تخریب + لستین)، گروه (تخریب + ویتامین A) و گروه (تخریب + لستین، ویتامین A) با استفاده از آزمون آماری One way ANOVA در ورود به جعبه تاریک پس از 20 دوره (مرحله به خاطراتی اول). نشان داده‌ها بر اساس Mean±SEM است. (p<0.05).
نتانمات در نتیجه گیری های فوق میتواند مربوط به اختلاف
در روش‌های آزمایش و دوزه‌های مورد استفاده باشد. همان‌طور
که می‌دانیم حساسیت گرفتگی بودیم که تأثیر
ویتامین A روی پاتولگی کامل و استنشاق به دو زیر است.[14]
و با ممکن است این نتایج تحت تأثیر عوارض ناشی از
هیپرپولیمیونی به قرار گرفته باشد.

تجویز مقدار توأم لیسین و ویتامین A متعاقب تغییر
موضعی C1A باعث افزایش حافظه احترازی غیرفعال در
دستگاه شلوت باکس گردید و در پژوهش قابلیت تجویز توم
لیسین و ویتامین A افزایش حافظه تأمینی موی‌های
صحراї سالم را در دستگاه ماز ت- شکل افزایش داد.[16]
پژوهش‌های انجام شده در زمینه اثرات سافت‌باندلیک کولین بر
حافظه و یادگیری حیوانات نشان داده است که سافت‌باندلیک
کولین به‌معنی که موی‌های جوان به‌پهپاد نمی‌دهد از
موی‌های مسن، حافظه احترازی را در دستگاه شلوت باکس
بهبود می‌بخشد.[27] علاوه بر آن از لیسین به عنوان ماده
افراز هوشمند کولین و استنل کولین در مغز در درمان
بیماری‌های آنژيم استفاده می‌شود.[28] از طرفی گزارش شده
که اضافه کردن رتیونیک اسید به محیط کشت سلول‌های
موربی، ترش صنعت کولین و مقدار آنزیم استنل کولین
ترانسفرزا را افزایش می‌دهد.[9] همچنین مشاهده شده است
که در موی‌های که دوره نوزادی به‌مدت 12 هفته از
ویتامین A در ریز غذای محروم شده بودند، کاهش ترشج
استنل کولین در هیپوکامپ به سبب تجویز ویتامین A بهبود
یافته[29] مشخص شده است که کمبود ویتامین A سبب
کاهش تقاضا طولانی مدت در موی‌های جوان می‌گردد.
[30]

همچنین در نورهای هیپورئزیک، یک سیستم با میل
High Affinity Choline Transport (HACHT)
نرکیبی با بلا ارتباط کلونی به نام
وجود دارد که جایگاه آن در پایان
اکسوسی است. گزارش شده است که این سیستم در ارتباط با
آنزیم استنل کولین ترانسفرزا می‌باشد.[19] بنابراین احتمالاً

به طور کلی سیستم عصبی کلونی‌زیک نقش مهمی در
فعالیت‌های ادراری و شناختی نظیر حافظه و یادگیری بر عهده
دارد و اسبس سیستم کلونیزیک حافظه را کاهش می‌دهد
[19-21]. در این تحقیق، به توجه به داده‌های
AF06A ژن رتیونیک‌اسید به عنوان یک محرک کننده سنت برن تروین
سبد اختلالاتی در یادگیری فضایی و رفتاری می‌شود. تجویز
لیسین می‌تواند احتمالاً از طریق بهبود عملکرد سیستم
کلونیزیک و سفت‌باندلیک اختلالات ناشی از این دارو را بهبود
دهد[21]. در این مطالعه بشویان از ناحیه
هیپوکامپ بدلیل تغییر گروگشت الکتریکی فاقد عملکرد
می‌باشد. بنابراین با توجه به این که سیستم کلونیزیک نقش
مهمی در اعمال شناختی و یادگیری اینفا می‌کند، مواد
هیپوکامپ یک سیستم عصبی مخصوصاً
kولینزیک را تقویت می‌کند[15,28]، می‌تواند از طریق
تقویت م dinerها دست نخورده در هیپوکامپ و نیز مناطق
خارج هیپوکامپی که درگیر در حافظه و یادگیری می‌باشد.

سبب بهبود رتیونیک اسید تغییر تحویل شود.

این مطالعه همچنین نشان داد که ویتامین A با مقدار
8000 و یک بر کیلوگرم پائیز بهبود نهایی حاصل از تغییر
دو طرفه C1A هیپوکامپ نمی‌شود. در پژوهش قابلیت ما نیز
مشخص شده بود که این دارو از ویتامین A می‌تواند زمان
یادگیری فضایی موی‌های سالم را افزایش دهد.[14]
مشخص شده که محرولی معنایی از ویتامین A در رگ کاهش
سطح استنل کولین هیپوکامپ تأثیری بر حافظه کارکردی
موی‌های مدرن ندارد.[23] از طرفی می‌توان گزارش
گزارش داده که تجویز آنال مزن که سبب اختلالات در
مسیر بیونستار رتیونیک اسید می‌شود، موجب کاهش ترشج
استنل کولین در نورهای هیپوکامپی می‌شود و این
روش از یک طرف کارکردی و حافظه احترازی فعل
کاهش می‌یابد[23]. در میان سیستم‌های که گیرنده‌های
رتیونیک اسید چهارهافته، فقدان ویتامین A سبب
اختلال در فعالیت‌های یادگیری می‌شود [26-25]. این
نتیجه‌گیری

در این مطالعه به طور کلی نتیجه‌گیری شد که تخریب دو طرفه در نواحی CA1 هیپوکامپ سبب کاهش پایداری احترازی غیرفعال می‌شود. متعاقب تخریب الکتریکی دو طرفه نواحی CA1 هیپوکامپ، تجزیه دهانی مقداری توم‌بر لسیتن و ویتامین A حافظه احترازی غیرفعال را در دستگاه شانل باکس بهبود می‌دهد. احتمالاً اثر تجزیه توم‌بر این دو دارو از طریق افزایش سطح کولین و آنزیم استیل کولین ترانسفراز مغز سبب بهبود حافظه می‌باشد. همچنین این دارو امکان ارتقاء جریان از حالت انداره‌گیری سطح کولین و آنزیم استیل کولین ترانسفراز مغز را ایجاد می‌نماید.

References

The Effect of Oral Lecithin and Vitamin A on Learning Following Lesion of Posterolateral Area of CA1 of Rat

M. Afarinesh MSc 1, AA. Moazedi PhD 2, M. Abbasnegad PhD 3, V. Sheibani PhD 4,

Received: 13/12/06 Sent for Revision: 14/04/07 Received Revised Manuscript: 21/06/07 Accepted: 16/07/07

Background and Objective: There are a number of studies, which focused on the improvement of reorganization disease such as Alzheimer. These investigations emphasis on the role of hippocampus on spatial learning of rats. In this study, we investigated the effects of oral administration of lecithin (Lc) and Vitamin A (VitA) on learning and memory of the adult male rats in absence of posterolateral area of CA1 (PLCA1).

Materials and Methods: In this experimental study 56 adult male NMRI rats (275±25g) were used. After lesion in PLCA1 all animals were trained for passive avoidance memory (PAM) by shuttle box. The animals were divided into 8 groups as follow: Control [(non administration), sham (Oral distilled water (dw), sham operated (only electrode insertion)], Lesion (le) (PLCA1 disrupted)], four test groups (le +dw), (le + Lc 120 mg/kg), (le + VitA 80000IU/kg) and (le+ Lc + VitA). All administrations (10 mg/kg B.W) were done orally for 7 days, one hour before each experiment.

Results: The result showed significant difference between le and sham operated groups regarding first and second phase of remembering (p<0.05). Co-administration of Lc and VitA can repair PAM of injured rats in comparison with le+dw group significantly (p<0.05), and the VitA had no significant effect on the IAM of injured rats. Administration of VitA significantly reduced memory of the rat-PLCA1 (p<0.05).

Conclusion: Bilaterally local lesion of CA1 is able to reduce passive avoidance memory. It seems that co-administration of Le and VitA, can improve PAM of CA1 –lesion rats.

Key words: Hippocampus, Lecithin, Vitamin A, Inactive Avoidance Memory

Funding: This research was funded by Shaheed Chamran University.

Conflict of interest: None declared.

Ethical approval: The Ethics Committee of Shaheed Chamran University approved this study.

1-MSc, Neuro Sciences Reasearch Center, University of Medical Sciences, Kerman, Iran
(Corresponding Author) Tel: (0341) 2120546, Fax: (0341) 2111010, Email: rezaafarinesh@Gmail.com
2- Prof., Dept. of Biology, Faculty of Sciences, Shaheed Chamran University, Ahvaz, Iran
3- Assistant Prof., Dept. of Biology, Faculty of Sciences, Shaheed Bahonar University, Kerman, Iran
4- Assistant Prof., Dept. of Physiology, Biology Neuro Sciences Reasearch Center, University of Medical Sciences, Kerman, Iran