مقاله پژوهشی
مجله دانشگاه علوم پزشکی رفسنجان
دوره نهم، شماره اول، بهار ۱۳۸۹، ۱۲-۳
توزیع مورفونین خوراکی سبب تأخیر در تکوین قشر بوبایی در موش بزرگ آزمایشگاهی نژاد ویستار
در دوران جنینی می‌گردد: یک مطالعه مورفومتریک

جواد فلاحی‌بافایی، ۱- مهرانگی صدوقی، ۲- حمیون زردوئی، ۳- هدایت صحرایی، ۴- حسن بهادران، ۵- سعید‌آبادی، ۶- حسن دشت‌نورد، ۷- سیروس جلیلی، ۸- سیمین رحیمی

دریافت اصلی از نویسنده: ۸۸/۱۲/۶۰، پذیرش مطالعه: ۸۸/۱۳/۱۶، دریافت اصلاحی از نویسنده: ۸۸/۱۳/۱۲

چکیده
زمینه و هدف: مطالعات قبلی نشان داده که مصرف مورفونین در طی دوران بارداری می‌تواند منجر به تأخیر در نمو جنین و یا عملکرد غیرطبیعی دستگاه‌های مداری بوده است. این پژوهش بررسی اثر مصرف مورفونین توسط مادر تکوین قشر بوبایی در موش‌های بزرگ آزمایشگاهی نژاد ویستار بر سلول‌های فردی و نوزادان است.

مواد و روش‌ها: در این تحقیق مداخله‌ای تصادفی از ۱۲ موش بزرگ آزمایشگاهی نژاد ویستار با محدوده وزنی ۲۵۰-۴۰۰ گرم استفاده شد. گروه آزمایشی ۲۰/۰۰ گرم بر کیلوگرم مورفونین در طی آتشامودن و گروه کنترل فقط آشامیدنی و گروه کنترل فقط آشامیدنی در یک فردند. در روز ۱۹ بارداری موش‌ها با کلروفورم کشیده شدند و جنین‌ها مقدار جراحی از بدن حیوان خارج و به منظور فیکس شدن به مدت دو هفته در محلول فرم آلدید ۲۰٪ قرار گرفتند. سپس نمونه‌ها با استفاده از نوار‌های دیجیتال توزین سه‌گمدی و سهمی، محور پیشی-شکمی، قرنیز، عرض گردش در طول محرک دو عضوی اهلیان آنها اندازه‌گیری شد. جنین‌ها مراحل پردرازی بافتی را به‌طور کامل و پس از تشکیل گردیده، نوزادان به‌طور نزدیکی تکوین قشر بوبایی مورد بررسی میکروسکوپی قرار گرفتند.

یافته‌ها: کاهش طول محور پیشی-شکمی-کشکی و قرنیز-اکسی‌پنال (به ترتیب ۵/۰۵ و ۱/۰۰٪) و عدم تغییر طول محور سری-دمی، عرض گردش در طول محرک دو عضوی اهلیان نوزادان کاهش یافتند. در نظر گرفته شد که ژن‌های کاهش تأثیر داشته‌اند. در ژن‌های نوزادان کاهش در بزرگی جنین و تأثیر رو به رو در این تعداد از نوزادان موجب کاهش وزن و طول جنین می‌گردد. این اسبابی ممکن است منشأ تغییرات و فرطی در دیده‌شده در حیاتیات دام که از مادران باردار معمولاً به دنبال اتمام می‌گردد.

واژه‌کلیدی: مورفونین، قشر بوبایی، موش حشرایی

۱- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۲- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۳- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۴- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۵- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۶- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
۷- استاد گروه آموزشی زیست‌شناسی، دانشکده زیست‌شناسی دانشگاه آزاد اسلامی، واحد تهران شمال
مقدمه

احتمال یکی از مشکلات جوانان بشری امروز است و دولت‌ها برای بایان این روند از جهات خیلی می‌سازند. زیرا اگر آن افتاده باشد این روند را به طوری که فرهنگ‌مندان متولد شده از مادران معنادار از اول تولید دارای عوارض ناشی از مصرف مواد مخدر توسط مادران خود هستند. مصرف مواد مخدر توسط مادران باردار موجب تأثیری در نمو جنین و ایجاد نقابی جنین موجب بوده است که لشکر انتهاست.

گیرنده‌های مركب و کلیه دلتا در بدن انسان می‌کند. [91-110] این گیرنده‌ها منجر به کاهش تولید آدنوزین و فسفات حلقی (AMP) و افزایش خروج بیتامین و کاهش ورود بیتامین به سلول می‌شود. [12] این اثرات در نهایت به کاهش فعالیت سلول منجر می‌شود.

موش کچولی‌ها یا آزمایشگاهی دارد. با توجه به نقش مهم سیستم بیوبایی در کنترل وکتورها می‌تواند نقش مهمی را در حفاظت و تولید مکه مستقیماً با پاییزه فرد یا گونه‌های در ارتقاء گسترش (20) در مطالعه حاضر اثر تجویز خوراکی مورفین در تقویت قدرت بیوبایی در جنین موش‌های بزرگ آزمایشگاهی نازد ویستران بررسی شد. با توجه به مطالعه قبلی در مورد بررسی تأثیر مورفین در دوران بارداری بر تقویت پیاز بیوبایی در موش بزرگ آزمایشگاهی که توسط همین گروه انجام شده است (18) ممکن است این سوال مطرح شود که آیا این مطالعه با نتایج مطالعه فوق ادامه نشده و به طور جدی‌گانه مطرح می‌شود؟ یکی

پاسخ بایستی به نقش مجزای هر کدام از این دو سیستم در برداشت اطلاعات بیوبایی و ارتباط آنها با مراکز دیگر

باستگاه عصبی اندام (8) در این مورد بایستی دکتر

نمونه که گرچه هر دو بخش موش مطالعه قسمت‌هایی از

باستگاه بیوبایی موش نژک به شمار می‌رود، اما فشر

بیوبایی با مدارهای که پس از تولید انجام می‌کند، در

مهمترین عملکردزیان مغاز در جهت پیش‌رفت دخالت دارد.

این ناحیه از عکس در اینجا و پایداری شناخته و انتخابی

شناخته نقش عضله‌های دارد (20) قشر بیوبایی در تغییر و

یا تغییر فعالیت‌های احساسی‌یا نیز نقش دارد. از سوی

دیگر، قشر بیوبایی را به دلیل ارتباطاتی که با استرامای

شکی ایجاد می‌کند، مسئول بروز پاسخ‌های حرفه‌ای به

بوهای ناخواسته در حیوانات مادیدان (20) این در حالی است

که پیاز بیوبایی به طور عمدی مسئول ارسال دسته‌بندی

شده اطلاعات بیوبایی به قسمت‌های مختلف مرتبط با

بیوبایی از جمله مخی و هیپوتالاموس می‌باشد (20) به

دبیرین تغییر عملکردی، به‌طور می‌رسد که تیم‌تان

نقش هر دو بخش را باهم و در یک مطالعه مورد بررسی

قرار داده و بهتر است خش جدایگان موش بررسی قرار

گیرد.

مواد و روش‌ها

این پژوهش تجربی مداخله‌ای، در ازمایشگاه مرکز

تحقیقات علوم اعضا دانشگاه بقیه‌ای (ع) در زمستان

سال 1384 انجام شد و از موش‌های ماده باکر به ضرورت

از دو گروه با میانگین وزنی 300-500 گرم استفاده شد

(موش‌های بارداری اول). موش‌ها در قفس‌های 2 تایی و

در درجه حرارت محتس (24 درجه سانتی‌گراد) با دوره

نویع طبیعی (11 ساعت روشی و 12 ساعت تاریکی)

نگهداری شدند. در طول دوره آزمایش آب و غذا کافی

در اختیار موش‌ها قرار گرفت.

در این مطالعه، سوخت‌اتومورفین‌های شده از شرکت

تماد ایران به صورت خوراکی استفاده گردید. موش‌ها به

دو گروه تقسیم شده و هر گروه شامل شش سر موش بود.

تعداد 13 سر موش سالم ماده در گروه‌های دوتایی به یک

موش نر بالغ جفت اند و پس از حصول اطمینان از

بارداری (با مشاهده اسپرمر در کشت وازینی)، صبح روز

بعد از موش نر جد شده و در همان گروه‌های دو یا

نگهداری گردیدند. از این زمان به بعد (روز صفر جنینی)

گروه‌های آزمایشی مقدار 0.5 میلی‌گرم در میلی‌لیتر

مورفین به صورت زیوان در بیابند کردن (برای دو موش

45 میلی‌گرم مورفین در 90 میلی‌لیتر آب شرب

لوله‌کشی شیر)، میزان مورفین مصرفی برای 14 میلی‌لیتر

آب به ارزیاب 100 گرم وزن موش محاسبه گردید اما

سعی بر این بود که در مقدار این مورد نیاز حیوان بدون در

اختیار آنها قرار داده شود. لازم به توضیح است که در این

روش با توجه به مدیت زمان تجویز مورفین و نیز مقدار

بسیار کم آن نسبت به روش معمول اقتدار اعتبار به مورفین

بررسی بود.
ب روش خوراکی[12]، حیوانات معتاد محسوب شدند و به همین دلیل این روش تنها به بررسی اثر دارو بر تكوین جين تمرکز دارد و هیچ کدام از الگوهای مصرف مورفین از جمله الگوی ایجاد اعتیاد، الگوی مصرف مزمن، الگوی ضد اضطراب و یا الگوی ضد درد را شامل نمی‌شود؛ هر چند که تا حدودی به الگوی مصرف مزمن دارو نزدیک است. در روز 19 بارداری، موشها با کلورفنی کشته شده و جين‌ها به همراه رحم از بدن موش‌ها مادر خارج و به محلول فرماین 1/2 بری مدت یک هفته انتقال یافته‌اند. این جين‌ها به دلیل استفاده از کلورفن مره دودنده و از نظر قوانین کار به جهان‌پایه قرار دادن آنها در فراصیل ممکن است. نتایج

tj2y
این اندازه‌گیری‌ها همچنین نشان می‌دهد که تجربه‌ها مورفین‌هایشان به موزه‌های باردار سبب کاهش طول محور پشته‌ای شدکمی می‌باشد. در گروه کنترل و گروه آزمایش فروشان، اکسی پیتال (19 ± 0.005) میلی‌متر در گروه کنترل در مقایسه با (19 ± 0.005) میلی‌متر در گروه آزمایش گردیده (به ترتیب p < 0.01 و p < 0.001) و بر طول محور سری-دمی (26 ± 0.005 میلی‌متر در گروه کنترل در مقایسه با 21 ± 0.005 میلی‌متر در گروه آزمایش)، عرض شکم (26 ± 0.005 میلی‌متر در گروه کنترل و 20 ± 0.005 میلی‌متر در گروه آزمایش) و طول محور دو طرفی اهیه‌ها (26 ± 0.005 میلی‌متر در گروه کنترل و 20 ± 0.005 میلی‌متر در گروه آزمایش) جنین‌ها اثری نداشت.

مشاهدات مورفومتریک: اندازه‌گیری‌ها مورفومتریک نشان داد که جنین‌های مربوط به مادران معتاد دارای میانگین تراکم سلول دمکنی در سه‌ای (منطقه‌های قشر بوبایی) هستند (p < 0.001). علاوه بر این، میانگین ضخامت قشر بوبایی در گروه آزمایش نسبت به گروه کنترل کاهش معنی‌داری بود (p < 0.005).

بررسی میکروسکوپی قشر بوبایی: این جنین‌ها به روش رنگ‌آمیزی هم_atomکسیلین- انتزیزی نشان داد که در گروه کنترل سه جنین قابل تماشای بوده و مرز مشخصی بین سه جنین دیده می‌شود. همچنین، لایه داخلی نسبت به دو لایه میانی و پیشین رشد کمتری دارد (شکل 1- 2).
این نکته در رنگ‌آمیزی نیترات نقره نیز مشخص گردید (شکل‌های ۴ و ۵).

در حالتی که در گروه آزمایش مرز بین سه لایه قشر بوبایی واضح نبود و لایه داخلی نسبت به دو لایه دیگر گسترش قرار نمی‌گرفت، که حاکی از عدم تفاوت سلول‌های این لایه است (شکل‌های ۱ و ۲).

برای گروه کنترل با رنگ آمیزی هیاتولوسین-آنتوزیلن، سه لایه قشر بوبایی مشخص و مرز بین لایه‌ها قابل تشخیص هستند. پیکان‌ها محل مرز لایه‌های قشر را نشان می‌دهند (برکت‌نامه‌ی ۱۰۰).
بحث

نتایج مطالعه حاضر نشان می‌دهد که مصرف مورفین در دوران بارداری می‌تواند منجر به تأخیر در نمای قشر بویایی چنین‌گونه‌ای گردد. نتایج این تحقیق با چندین مطالعه که نشان داده‌اند تأثیر تجویز اوبوپیدا در افزایش تأخیر در تمایز چنینی می‌باشد هم‌خوانی دارد (19-15).

سؤال اصلی این است که چرا مصرف مورفین باعث بروز این مشکل می‌گردد؟ برای پاسخ‌گویی به این سؤال با استفاده از طریق‌های مختلف، مطالعات نشان می‌دهند که نورون‌های موجود در دستگاه عصبی مخ در مراحل دوره بارداری (روزهای 10 تا 14) تولید می‌شوند و بعد شروع به مهاجرت می‌کنند تا به مکان‌های نهایی برسد. مهاجرت نورون‌ها و تمایز سلولی به طور همزمان صورت می‌گیرد. اگر چه در طول مراحل این آزمایشات، بعد از تولید نیز ادامه پیدا می‌کند (11)، در طی این دوره بلدنه مدت رشدی در تمام استاندارد (22) نورون‌هایی به به‌طور آزمایشی تولید شده‌اند از محل اولیه در ناحیه ژنیتال به محل نهایی منتقل می‌شوند. در این فاز، این سلول‌ها به‌طور آزمایشی با گروه کنترل کاشت یافتند. در حالی که تعداد سلول‌ها در لایه میعانی تغییر چندانی نداشت است (نمودار 3).

دروز 9، شماره 1، سال 1389

مجله دانشگاهی علوم پزشکی رفسنجان
می‌توان احتمال داد که تاثیر مورفین بر کاهش سلول‌ها به‌طور دلیل (مثلاً القای مارک سلولی [24])، فضای خالی را در بین سلول‌ها ایجاد کرده و سلول‌ها برای پر کردن فضای خالی و همچنین برای پر کردن ارتباط با هم، انتشارات نورونی خود را افزایش می‌دهد. با توجه به اینکه نورون‌ها برای ماهاجری خود نیاز به سلول‌های گلیا دارند، یعنی روزانه این سلول‌ها مهاجرت می‌کنند [27]، می‌توان این احتمال را در نظر گرفت که تحت تأثیر مورفین، سلول‌های گلیا کاهش یافته‌اند (احتمالاً اثر مارک سلولی) و این امر تأثیر ماهاجری نورون‌ها را در پی داشته است.

سوال دیگر در این تحقیق و تحقیقات مشابه این است که مورفین چگونه توانسته است این اثر مهم و قابل توجه را در خشک‌شدن مختلفی ایجاد کرده؟ در حالت که میزان مورفین استفاده شده در این تحقیقات به اندازه‌ای که توانایی اضطراب محیط سلولی نورون‌ها را کاهش دهد، بوی، زعیم، دیگری، گرچه وجود گلیاه‌های ویژه‌ای بر روی سلول‌های گلیا نشان داده شده است [28]. اما امکان دارد به دلیل وجود گلیاه‌های فیبروسین در سلول‌های گلیا نشان داده شده است و کارکرد آنها به عنوان محل اثر مورفین در چنین صورتی بحث نمی‌رسد. به همین دلیل با توجه به ناشی‌انگیز گره‌ای که می‌توان این تحقیقات قیلی (14-19) را از دیده شده از استرس در الگو تغییرات سامانی در مایع جنین [28] در تحقیق چگال‌نگاری اثر مورفین بر ترشح نورون‌گون مایع سلول‌گون مورفین بر روی سلول‌های گلیا تولید شده و یا سلول‌های معمایی ناشی از ماهاجری آنها تأثیر گذاشته و به این ترتیب منابع از ماهاجری دیگری این سلول‌ها شده است. در لایه مایعی تعداد سلول‌ها در مقایسه با دو لایه دیگر تفاوت فاقدی نداشته این یافته و نیاز به نشان رساندن سلول‌ها دچار تأثیر شده است و این اثرات گاهی در نمای فچر بیشتر تأثیر خود را بر سایر آنها اعمال کرده است. با استفاده از روش‌هایی اختصاصی (نیروی تنشی می‌توان به هر یک از آنها پاسخی داده‌اند. با این تحقیقات اثرات قطعی مشخص که می‌توان انتظار داشت شد نه‌تنها باعث کاهش تراکم سلول‌ها شده است. به‌طور کلی بحث ناشی از افزایش انتشارات نورون‌ها نیز درک‌شده است. در این باره...
معیارهای کمی رشد، جنین از جمله وزن و طول محسوس
پشتی-شکمی و فرونشال-اکسی پشتیل را نسبت به
حبوبات گره کنترل کاهش داد و برخی دیگر از
این معیارها از جمله طول محسوس سر-دمی، عرض شکم
و طول محسوس و طریقی امکانی که جنین اثری نداشت، این
امر به معنای آن است که تأثیر مصرف احتمالاً با گذشت
دوره بارداری قابل جبران بوده و با در زمان انجام مطالعه
(17 روزگری جنین) قابل بررسی نبوده است. هر چند که
این نتایج به معنای مضر نبودن مصرف این ماده در دوران
بارداری نیست. تأثیر مصرف مورفین بر تکوین دستگاه
عصبي به ویژه قشر بیوبایی در این مطالعه به اثبات رسید.

تشکر و قدردانی

این مطالعه با حمایت مالی مرکز تحقیقات علوم اعصاب
کاربردی دانشگاه علوم پزشکی بقیه الله (عج) انجام شده است.

نتیجه‌گیری

در این تحقیق، مصرف مورفین خوراکی برخی از

References

[1] Iranian Drug Control Headquarter. The Year
Book of Iranian Drug Control Headquarter, 1St
ed. Tehran; 2007. [Farsi]

Pregnancy & Health Survey. Drug use among
women delivering live births: 1992, Rockville:

National Institute on Drug Abuse. 1996, pp: 1-
157.

following maternal morphine administration:
nutritional or drug effect? Biol Neonal 1977;
32: 222-8.

Maternal Oral Morphine Consumption Delays Olfactory Cortex Development in Wistar Rats During Embryonic Period: A Morphometric Study

J. Fahanik Babaei1, M. Sadooghi2, H. Zardooz2, H. Sahraei1, H. Bahadoran5, S. Saeidabadi1, H. Dashtnavard3, C. Jalili3, S. Ryahi7

Received: 20/08/08 Sent for Revision: 09/04/09 Received Revised Manuscript: 06/06/09 Accepted: 11/07/09

Background and Objectives: Previous studies have shown that morphine consumption during pregnancy may delay embryo development or cause abnormal nervous system function. This study focused on the effects of maternal morphine consumption on olfactory cortex development in Wistar rats.

Material and Methods: In this experimental study, 12 wistar rats (250-300g) were used. The experimental group received morphine solution (0.05 mg/ml) where as the control group received tap water. On the 19 th day the pregnant rats were killed by chloroform, and the embryos were removed surgically. The embryos were fixed in formalin 10\% for 2 weeks. Then the weight of fixed embryos was calculated by a digital balance. In addition, animal sizes including Crump-Rump (C-R), Dorsal-Ventral (D-V), Frontal-Occipital (F-O), Abdominal Width, and Biparietal Axis length were measured by a caliper. Tissue processing, sectioning and staining (both hematoxylin and eosin (H&E) and silver nitrate staining) were then applied for the embryos. The sections were examined for olfactory cortex development by light microscope.

Results: Reductions in D-V lengths as well as embryonic weight was observed in the experimental group (p<0.01, p<0.05). On the microscopic view, a growth retardation was observed in all three olfactory cortex layers in the experimental group. In addition cell compression in cortex layers and neuronal process was also reduced in the experimental group (p<0.05).

Conclusion: This study showed that oral morphine consumption during pregnancy causes defect in the development and growth retardation in olfactory cortex region. The study also showed that oral morphine consumption reduced both the weight and length of the embryos. These defects may be the cause of behavioral problems observed in the animals who have been born to addicted mothers.

Key words: Morphometry, Olfactory Cortex, Morphine, Wistar Rats

Funding: This study was supported by a grant from applied Neuroscience Research Center, Baqiyatallah (a.s.) University of Medical Sciences.

Conflict of Interest: None declared.

Ethical approval: All experiments were conducted in accordance with standard ethical guidelines and approved by the local ethical committee (The Baqiyatallah (a.s.) University of Medical Committee on the Use and Care of Animals, 81/021, July 10, 2002).

1 Academic Member, Dept. of Biology, Islamic Azad University, Tehran North Branch, Iran
2 Assistant Prof., Dept. of Biology, Islamic Azad University, Tehran North Branch, Iran
3 Assistant Prof., Dept. of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Associate Prof., Dept. of Physiology and Biophysics, Faculty of Medicine, Applied Neuroscience Research Center, Baqiyatallah (a.s.) University of Medical Sciences, Tehran, Iran (Corresponding Author) Tel: (021) 26127257, Fax: (021) 2612757, E-mail: h.sahraei@bmsu.ac.ir
5 Assistant Prof., Dept. of Anatomy, Faculty of Medicine, Behavioral Sciences Research Center, Baqiyatallah (a.s.) University of Medical Sciences, Tehran, Iran
6 Assistant Prof., Dept. of Anatomy, Faculty of Medicine, University of Medical Sciences, Kermanshah, Iran
7 Academic Member, Dept. of Physiology, Faculty of Medicine, Artesh Medical University, Tehran, Iran