مقاله يژوهشي

مجله دانشگاه علوم پزشکی رفسنجان دوره هشتم، شماره چهارم، زمستان ۱۳۸۸، ۲۷۲–۲۶۳

اثر مکمل سازی ال-کارنیتین و هپارین بر غلظت گلوکز و لاکتات هنگام فعالیت ورزشی

مجتبی ایزدی ۱، انوش اقدامی ۱، داود خورشیدی ۱، حسین دوعلی ۱، فاطمه کیانی ۳

دریافت مقاله: ۸۷/۱۱/۲۹ ارسال مقاله به نویسنده جهت اصلاح: ۸۸/۳/۲٤ دریافت اصلاحیه از نویسنده: ۸۸/۸/۱۰ پذیرش مقاله: ۸۸/۸/۱۲

چکیده

زمینه و هدف: افزایش موجودیت اسید چرب آزاد، به افزایش اکسیداسیون چربی و کاهش اکسیداسیون کربوهیدرات در عضلات اسکلتی بدن منجر میشود. این مطالعه، به منظور تعیین اثر مکملسازی ال-کارنیتین به همراه تزریق هپارین روی متابولیسم کربوهیدرات هنگام ورزش هوازی انجام شد.

مواد و روشها: در این مطالعه کارآزمایی بالینی، ۳۰ دانشجوی پسر غیر ورزشکار دانشگاه آزاد اسلامی ساوه در قالب دو گروه کنترل و تجربی آزمون ارگومتری زیربیشینه Astrand را در دو مرحله جداگانه با فاصله زمانی یک هفته اجرا نمودند. مرحله اول: اجرای آزمون ورزشی در گروه تجربی (بدون مصرف ال کارنیتین یا تزریق هپارین) و گروه کنترل بدون استفاده از دارونما انجام گرفته و در مرحله دوم آزمون ورزشی بعد از مصرف ال کارنیتین یا تزریق هپارین در گروه تجربی و استفاده از مصرف خوراکی و تزریقی لاکتوز (دارونما) در گروه کنترل انجام شد. در هر دو مرحله پس از انجام آزمون، غلظت پلاسمایی گلوکز و لاکتات اندازه گیری و تجزیه و تحلیل دادهها با استفاده از آزمون t صورت گرفت.

یافتهها: یافتههای مطالعه عدم تغییر غلظت پلاسمایی گلوکز (3 ± 1 در مقابل 1 ± 1 میلیگرم در دسیلیتر) را به واسطه مصرف ال–کارنیتین و تزریق هپارین در گروه تجربی نشان داد. غلظت لاکتات پلاسما نیز در گروه تجربی $3/1\pm1/8$ در مقابل $3/1\pm1/8$ میلیگرم در دسیلیتر) تغییر معنی داری نداشت. همه متغیرهای وابسته در گروه کنترل به واسطه مصرف دارونما بدون تغییر ماندند.

نتیجه گیری: یافته های این مطالعه نشان داد که افزایش موجودیت اسید چرب آزاد، متابولیسم کربوهیدرات یا عملکرد استقامتی را متأثر نمی کند. مطالعات بیشتری برای تعیین اثر دقیق این مکملسازی ها روی متابولیسم چربی - کربوهیدرات و عملکرد استقامتی مورد نیاز است.

واژههای کلیدی: ال-کارنیتین، هپارین، متابولیسم گلوکز، ورزش، اسید چرب آزاد

۱- (نویسنده مسئول) مربی گروه آموزشی تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی واحد ساوه

تلفن: ۳۵۰۱-۲۲۱-۵۰۵، دورنگار: ۲۲۲۱۹۰۵، دورنگار: ۲۲۲۱۹۰۵، پست الکترونیکی: ۲۲۲۱۹۰۵ izadimojtaba ورنگار:

٢- مربى گروه أموزشي بيوشيمي، دانشگاه آزاد اسلامي واحد ساوه

٣- مربى گروه آموزشي تربيتبدني و علوم ورزشي، دانشگاه آزاد اسلامي واحد ساوه

مقدمه

سازوکارهایی که عضلات به واسطه آنها استفاده از کربوهیدرات و چربی را در ورزشهای طولانی مدت تنظیم می کنند، پیچیده و هنوز نامشخص است. کربوهیدرات یک سوخت محدود و پایان پذیر به ویژه در فعالیتهای طولانی مدت است و تخلیه آن به هنگام این فعالیتها عامل اصلی ایجاد خستگی است. از این رو، حفظ ذخایر کربوهیدرات هنگام فعالیتهای طولانی مدت از اهداف اصلی ورزشکاران استقامتی می باشد. چربی بدن یک سوخت پایان ناپذیر حتی در ورزشهای بسیار طولانی مدت است. با افزایش حتی در ورزشهای بسیار طولانی مدت است. با افزایش زمان فعالیت ورزشی به تدریج بر میزان اتکای تأمین انرژی توسط چربیها افزوده و برعکس از سهم کربوهیدراتها کاسته می شود [۱].

به دلیل ذخایر محدود کربوهیدرات و نقس اصلی آن در شروع خستگی به ویرژه هنگام فعالیتهای طولانی مدت، هدف عمده بسیاری از متخصصین بیوشیمی و فیزیولوژی ورزش در مطالعات پژوهشی، ایجاد شرایط مناسب با هدف افزایش میزان سهم انرژیزایی متابولیسم چربی و به نوبه خود کاهش سوخت و ساز کربوهیدرات به منظور حفظ ذخایر آن برای مراحل پایانی فعالیت و تأخیر در شروع خستگی است. به هنگام فعالیت ورزشی، افزایش غلظت پلاسایی گلوکز، از علایم کاهش مصرف کربوهیدرات یا حفظ ذخایر آن [۱] و کاهش غلظت کربوهیدرات یا حفظ ذخایر آن [۱] و کاهش غلظت توسط متابولیسم چربیهاست [۲].

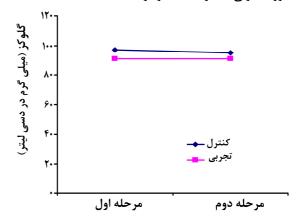
تبدیل ذخایر چربی یعنی تریگلسیریدها به اسید چرب آزاد Free Fatty Acid) FFA) و همچنین انتقال اسید چرب آزاد به درون میتوکندری جهت سوخت و ساز اکسایشی، از مراحل کلیدی اکسیداسیون چربیها به شمار

می رود [۱]. عوامل مختلفی در ایجاد چنین شرایطی مؤثرند. کارنیتین یک اسید آمینه است که سنتز آن از طریق دو اسید آمینه ضروری لیزین و متیونین در کبد و کلیه صورت می گیرد یا توسط رژیم غذایی جذب بدن می شود [۳] و نقش آن انتقال اسید چرب آزاد به دورن ماتریکس میتوکندری جهت فرآیند بتا اکسیداسیون است [۴]. ال-كارنيتين شكل فعال فيزيولوژيكي آن است [۵] و نقـش مکمـلسـازی آن در افـزایش انتقـال FFA بـه میتوکندری بارها مشخص شده است. مطالعات پژوهـشی نشان دادهاند که مکملسازی کارنیتین به افزایش عملکرد استقامتی و کاهش غلظت لاکتات پلاسما [۶]، هـمچنـین افزایش اکسیداسیون چربی و کاهش غلظت پلاسمایی گلوکز [۴] منجر می شود. هپارین با افزایش و تسریع فعالیت لیپوپروتئین لیپاز به تجزیه تری گلیسرید به اسید چرب آزاد منجر میشود. تزریق وریدی هپارین با افزایش موجودیت FFA پلاسما همراه است [۱].

برخی مطالعات اظهار میدارند که تزریق هپارین به افرایش FFA، کاهش مصرف گلـوکز خـون و کـاهش اکسیداسیون کربوهیـدرات منجـر مـیشـود [۷]. مطالعـه Bacurau و همکـاران نـشان داد کـه مکمـلسـازی ال کارنیتین بـه افـزایش اکـسیداسیون کربوهیـدرات و کاهش اکسیداسیون و مصرف گلوکز منجر میشود [۸]. اما برخی مطالعات از عدم تأثیر مکمـلسـازی کـارنیتین روی غلظــتهـای گلـوکز و لاکتـات خـون و اکـسیداسیون کربوهیدرات یـا چربـی حکایـت دارنـد [۱۱-۹]. مطالعـات دیگری نیز عدم تأثیر تزریق هپارین روی فاکتورهای مـؤثر در متابولیسم کربوهیدرات را گزارش نمـودهانـد [۱۲-۱۲]. مرور مطالعات پژوهشی مذکور از تناقض بـین یافتـهـهـا در این نوع مکملسازیها روی فرآینـد متابولیـسم و عملکـرد

ورزشی حکایت می کند. همچنین تاکنون تأثیر همزمان مکملسازی کارنیتین و تزریق هپارین روی این متغیرها مورد مطالعه قرار نگرفته است. از این رو، این پژوهش با هدف ارزیابی تأثیر همزمان مکملسازی کارنیتین و هپارین روی میزان گلوکز و لاکتات پلاسما هنگام فعالیت ورزشی که از مشخصههای اکسیداسیون کربوهیدرات هستند، انجام شده است.

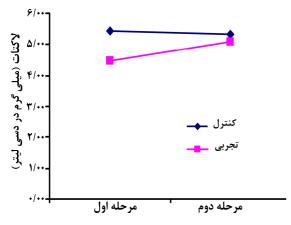
مواد و روشها


این مطالعه کارآزمایی بالینی دو سوکور در سال ۱۳۸۷ بر روی ۳۰ دانشجوی پسر غیر ورزشکار سالم از دانشگاه ساوه با روش نمونه گیری تصادفی ساده در قالب دو گروه مساوی کنترل و تجربی انجام شد. حجم نمونه بر اساس یافتههای برخی مطالعات انجام شده در خصوص میزان تأثير ال-كارنيتين يا هپارين و بر اساس برآورد حجم نمونه برای مقایسه دو نسبت، با خطای نوع اول ۵٪ تعیین شد. حدود اطمینان مطالعه برای برآورد حجم نمونه ۹۵٪ بـود. این پژوهش پس از اخذ رضایت از دانشجویان و تأیید شبکه بهداشت شهرستان، تحت حمایت دانشگاه آزاد ساوه انجام گرفت. آزمودنیها غیرسیگاری بوده و بیماری خاص یا سابقه بیماریهای متابولیکی نداشتند. افراد با سابقه دیسلیپیدمی یا مصرف داروهای مؤثر بر متابولیسم کربوهیدرات یا چربی، از شرکت در مطالعه منع شدند. این تحقیق در دو مرحله جداگانه با فاصله زمانی یک هفته اجرا شد. وضعیت تغذیه این دانشجویان که جملگی در خوابگاه دانشجویی ساکن بودند در طول حداقل ۴۸ ساعت قبل از اجرای آزمونها و نمونه گیری خون یکسان بود و همه آنها از اجرای ورزش در طول ۴۸ ساعت قبل از اجرای آزمون منع شدند. مراحل اجرا شامل: ١. اجراي آزمون ورزشی Astrand [۱۴] توسط هر دو گروه کنترل و تجربی

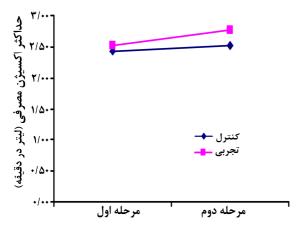
بدون مصرف ال-كارنيتين يا تزريق هپارين (پيش آزمون)، ۲. مصرف خوراکی ۳ گرم ال- کارنیتین و تزریـق درون وریدی هپارین (۱۰۰۰ واحد) به ترتیب ۹۰ و ۳۰ دقیقه قبل از آزمون ورزشی Astrand توسط گروه تجربی و همچنین مصرف خوراکی و تزریق لاکتوز (دارونما) قبـل از آزمون ورزشی توسط گروه کنترل مشابه با گـروه تجربـی (پس أزمون) بود. أزمون Astrand يـک أزمون ورزشـي زیربیشینه است که با شدت ۹۸ وات و سـرعت پـدالزنـی ۵۰ دور در دقیقه روی دوچرخه کارسنج (ارگومتر پایی) انجام می شود. به منظور فعال شدن متابولیسم اکسایش کربوهیدرات و چربی، این آزمون تا ۲۰ دقیقه ادامه یافت. میزان شدت کار برای هر دو گروه کنترل و تجربی در شرایط پیش آزمون و پس آزمون مشابه بود. بلافاصله پس از اتمام هر یک از آزمونهای ورزشی در شرایط پیش و پس آزمون در هـر دو گـروه، نمونـهگيـري خـون از وريـد بازویی به منظور اندازهگیری غلظتهای پلاسمایی گلوکز و لاكتات توسط پزشك آزمايشگاه انجام گرفت. ضربان قلب پایانی آزمون جهت محاسبه حداکثر اکسیژن مصرفی با استفاده از نموگرام Astrand ثبت شـد (حـداکثر اکـسیژن مصرفی از مشخصه های فیزیولوژیکی ظرفیت استقامتی است و به توانایی بدن در جذب بیشترین مقدار اکسیژن هنگام فعالیت ورزشی تعبیر میشود، افزایش مقدار آن بـه واسطه تمرین ورزشی یا سایر عوامل اثرگذار حاکی از افزایش ظرفیت استقامتی فرد است) [۲]. آزمونها و نمونه گیری خون پس از ۱۰ تـا ۱۲ سـاعت ناشـتایی بـین ساعتهای ۸ تـا ۱۰ صـبح انجـام شـد. کلیـه کیـتهـای آزمایشگاهی از شرکت پارس آزمون تهیه شده و توسط دستگاه اتوآنالایزر کوباس، آنالیز شدند. پس از جمعآوری و اندازه گیری هر یک از متغیرهای خونی در شرایط پیش و

پس آزمون در گروههای کنترل و تجربی، کلیه اطلاعات آماری توسط آزمون آماری t مستقل و جفت در محیط SPSS ویرایش ۱۳ با هم مقایسه شدند و $p<\cdot/\cdot \Delta$ معنی دار در نظر گرفته شد.

نتايج


کلیه افراد مورد مطالعه در هر دو گروه کنترل و تجربی (T±۲ سال)، آزمون ورزشی زیربیشینه Astrand را با موفقیت اجرا نمودند. نتایج آماری حاصله از آزمون اختلاف مستقل نشان داد که در شرایط پیش آزمون اختلاف معنیداری در میانگین غلظتهای پلاسمایی گلوکز و معنیداری در میانگین غلظتهای پلاسمایی گلوکز و لاکتات خون و حداکثر اکسیژن مصرفی بین گروه کنترل و تجربی وجود ندارد. یافتههای آماری در خصوص تغییرات مربوط به هریک از متغیرها در آزمونهای مراحل اول و دوم گروههای کنترل و تجربی نشان داد که مکملسازی در غلظت گلوکز پلاسما (عباه در مقابل ۷±۹۱ میلیگرم در دسیلیتر به ترتیب در مراحل دوم و اول آزمون) در دسیلیتر به ترتیب در مراحل دوم و اول آزمون) در گروه تجربی منجر نشد (نمودار ۱).

نمودار ۱-الگوی تغییرات غلظـت گلـوکز پلاسـما هنگـام آزمـون ورزشی در گرودهای مورد مطالعه.


هم چنین یافته ها نشان داد که متعاقب آزمون Astrand در گروه تجربی، غلظت پلاسمایی لاکتات به

واسطه مکملسازی ال-کارنیتین و تزریق هپارین در آزمون مرحله دوم (0.1 ± 0.0 نسبت به آزمون مرحله اول (مورن مرحله دوم در دسیلیتر به ترتیب در مراحل دوم و اول آزمون) تغییر معنی داری ندارد (نمودار ۲).

نمودار ۲- الگوی تغییرات غلظـت لاکتـات پلاسـما هنگـام آزمـون ورزشی در گرودهای مورد مطالعه.

حداکثر اکسیژن مصرفی نیز به واسطه تزریـق هپـارین تغییــر معنـــیدار نداشـــت (۲/۷۲±۰/۴۴ در مقابــل ۲/۵۳±۰/۵۲ لیتـر در دقیقـه بـه ترتیـب در آزمـونهـای مراحله دوم و اول) (نمودار ۳).

نمودار ۳- الگوی تغییرات حداکثر اکسیژن مصرفی هنگام آزمـون ورزشی در گرودهای مورد مطالعه.

یافته های این پژوهش عدم تفاوت معنی دار متغیرهای مذکور را در آزمون های مراحل اول و دوم گروه کنترل نیز خاطرنشان می کند (جدول ۱).

روههای مورد مطالعه	هنگام آزمون ورزشی در گ	حداكثر اكسيژن مصرفي	جدول ۱- مقایسه متغیرهای متابولیکی و ·
--------------------	------------------------	---------------------	---------------------------------------

حداكثر اكسيژن مصرفي	لاكتات	گلوکز	متغير
(میلیلیتر بر گیلوگرم در دقیقه)	(میلیمول بر لیتر)	(میلیگرم بر دسیلیتر)	گروه
ميانگين ±انحراف معيار	ميانگين ±انحراف معيار	ميانگين ±انحراف معيار	
7/ T Y±•/ T T	۵/۴۳±٠/۶۳	97411	كنترل (مرحله اول)
7/47±•/4V	۵/۳۳±٠/۵۴	98±18	كنترل (مرحله دوم)
Υ/ΔΥ±•/ΔΥ	4/47±•/9	91±V	تجربی (مرحله اول)
7/VV±•/44	۵/۱±۰/۶۱	91±8	تجربی (مرحله دوم)

بحث

یافتههای مطالعه حاضر نشان داد که مکملسازی ال-کارنیتین به همراه تزریق هپارین به تغییر معنیداری در غلظتهای گلوکز و لاکتات پلاسما که از مشخصههای متابوليسم كربوهيدرات هستند، منجر نمي شود. اين یافتهها با نتایج برخی مطالعات که عدم تأثیر هر نوع مكمــلســازي ال-كــارنيتين روى لاكتــات خــون [۹]، اکــسیداسیون چربــی و کربوهیــدرات [۱۰]، عملکــرد استقامتی [۱۵]، مصرف گلوکز یا سایر سوبستراها [۱۰] را انكار مىكنند همسو است. برخى مطالعات نيز عدم تغييـر معنهي دار غلظت گلوكز خون [18]، اكسيداسيون كربوهيدرات [۱۷]، غلظت لاكتات خون و عملكرد استقامتی [۱۸] را هنگام فعالیت ورزشی متعاقب تزریق وریدی هپارین گزارش نمودهاند. بر خلاف این یافتهها، مطالعات Stephens و Bacurau بيان ميكنند كه مكمل سازى ال-كارنيتين به افزايش غلظت گلوكز خون و کاهش گلیکولیز عـضلانی و افـزایش اکـسیداسیون چربـی منجر میشود که با افزایش زمان رسیدن به خستگی همراه است [۴،۸]. مطالعه Matera و همكـاران نـشان داد که کاهش تولید لاکتات هنگام فعالیت ورزشی از دیگر اعمال مكملسازي ال-كارنيتين است [١٩]. مطالعات

دیگری نیز اظهار میدارند که تزریق هپارین به افزایش FFA و اکسیداسیون چربی، کساهش اکسیداسیون کربوهیدرات [۲۰]، کاهش غلظت لاکتات خون [۲۱] و تأخیر در شروع خستگی [۲۲] منجر میشود.

على رغم يافته هاى برخى مطالعات كه مزاياى نيروزايي کارنیتین یا هپارین را روی متابولیسم اکسایشی هنگام فعالیت ورزشی تأیید می کنند، برخی دیگر نیز عدم تأثیر آنها را روی غلظت گلوکز و لاکتات خون هنگام فعالیت ورزشى گوشزد مىنمايند. تاكنون مطالعهاى جهت بررسى تأثير همزمان مكملسازى ال-كارنيتين و تزريق هپارين روى اين متغيرها انجام نشده است. با اين وجود، مطالعه Cha و همکاران با متدولوژی مشابه تحقیق حاضر نشان داد که مصرف کارنیتین به همراه مصرف کافئین که دارای خاصیت لیپولیتیکی مشابه هپارین است به افزایش غلظت FFA، افزایش اکسیداسیون چربی، کاهش اکسیداسیون كربوهيدرات و افزايش عملكرد استقامتي هنگام فعاليت ورزشی منجر می شود [۲۳]. همچنین مطالعه Murosaki و همکاران نشان داد که ترکیب کارنیتین و کافئین به افزایش معنی دار لیپولیز و بتا اکسیداسیون در مقایسه با مصرف هر کدام به تنهایی منجر شد [۲۴].

هپارین محرک فعالیت لیپوپروتئین لیپاز جهت افزایش تجزیه تری گلیسرید به FFA است به این صورت که

تغییر در غلظت لاکتات هنگام فعالیت استقامتی منجـر میشود [۲۶].

نتيجهگيري

یافتههای مطالعه حاضر در تأیید برخی مطالعات، عدم تأثیر مصرف همزمان ال-کارنیتین و تزریق هپارین که بارها به نقش آنها در تسریع و افزایش مصرف اسید چرب آزاد و اکسیداسیون چربیها اشاره شده است را روی غلظت پلاسمایی گلوکز و لاکتات نشان میدهد. این غلظت پلاسمایی گلوکز و لاکتات نشان میدهد. این احتمال وجود دارد که افزایش انتقال FFA یا اکسیداسیون چربی هنگام مصرف این مکملها با عدم تغییر در هر یک از عوامل در گیر در متابولیسم کربوهیدرات نظیر گلوکز یا لاکتات همراه باشد. این احتمال نیز وجود دارد که مزایای نیروزایی این مکملها در مراحل پایانی فعالیتهای نیروزایی این مکملها در مراحل پایانی فعالیتهای استقامتی ظاهر شود که نیازمند اجرای مطالعات مشابه هنگام آزمونهای ورزش طولانی تر همراه با اندازه گیری همزمان فاکتورهای در گیر در متابولیسم چربی و کربوهیدارت در آینده می باشد.

تشکر و قدردانی

نویسندگان مقاله از اداره بهداشت شهرستان، معاونت پـژوهش دانـشگاه آزاد سـاوه، آزمایـشگاه همـاتولوژی دانـش، دانشجویان و کلیه همکارانی که در اجرای ایـن طـرح مـشارکت داشتند تشکر و سیاسگزاری مینمایند.

افزایش FFA در اثر تزریق هیارین به هنگام فعالیت ورزشی به کاهش مصرف گلوکز و حفظ آن برای مراحل پایانی فعالیت و به نوبه خود تأخیر در شروع خستگی منجر می شود [۱]. از طرفی، وجود کارنیتین برای انتقال FFA به درون میتوکندری ضروری است و مکملسازی آن با هدف افزایش انتقال میتوکندریایی FFA و کاهش مصرف گلیکوژن و تأخیر در شروع خستگی هنگام فعالیت انجام می گیرد [۲۵]. برخی مطالعات عدم تغییر متغیرهای مذکور به واسطه این مکملسازی ها را به مرحله تجزیه تری گلیسرید به FFA یعنی عدم موجودیت میـزان کـافی FFA در خون و برخی دیگر به مرحله انتقال FFA به درون میتوکندری نسبت میدهند. اما یافتههای مطالعه حاضر، اثر نیروزایی مصرف همزمان کارنیتین و هپارین که به ترتیب در انتقال FFA به میتوکندری و تجزیه تری گلیسرید به FFA مؤثرند را روی متغیرهای وابسته نشان نداد. البته این امکان نیز وجود دارد که افزایش موجودیت FFA پلاسما به واسطه تزریق هپارین یا افزایش انتقال FFA به درون میتوکندری، با افزایش اکسیداسیون چربیها و افزایش عملکرد استقامتی بدون تأثیر در غلظتهاى گلوكز و لاكتات يلاسما هنگام فعاليت ورزشي همراه باشد. در این زمینه، مطالعه Odland و همکاران نشان داد که افزایش موجودیت FFA به واسطه تزریق هپارین به کاهش ۲۳ درصدی مصرف گلیکوژن بدون

References

causes a decrease in serum lipolytic activity and accumulation of chylomicrons in circulation. *J Lipid Res* 1994; 35(2): 229-38.

[1] Weintraub M, Rassin T, Eisenberg S, Ringel Y, Grosskopf I, Iaina A, et al. Continuous interavenous heparin administration in human

- [2] Weltman A, Seip R, Bogardus AJ, Snead D, Dowling E, Levine S, et al. Prediction of lactate threshold (LT) and fixed blood lactate concentrations(FBLS) from 3200-m running performance in women. *Int J Sports Med* 1990; 11(5): 373-8.
- [3] Broquist HP, Borum PR. Carnitine biosynthesis: nutritional implications. *Adv Nutr Res* 1982; 4: 181-204.
- [4] Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. *J Physiol* 2007; 581(Pt 2):431-44.
- [5] Negrao CE. Carnitine supplementation and depletion: tissue Carnitines and enzymes in fatty acid oxidation. *J Appl Physiol* 1987; 63: 315-21.
- [6] Karlic H, Lohninger A. Supplementation of Lcarnitine in athletes: does it make sense? *Nutrition* 2004; 20(7-8): 709-15.
- [7] Saloranta C, Koivisto V, Widen E, Falholt K, DeFronzo RA, Harkonen M, et al. Contribution of muscle and liver to glucose-fatty acid cycle in humans. *Am J physiol* 1993; 264(4): 599-605.

- [8] Bacurau RF, Navarro F, Bassit RA, Menegullo MO, Santos RV, Almeida AL, et al. Does exercise training interfere with the effects of L-carnitine supplementation? *Nutrition* 2003; 19(4): 337-41.
- [9] Eroglu H, Senel O, Güzel NA. Effects of acute L-carnitine intake on metabolic and blood lactate levels of elite badminton players. *Neuro Endocrinol Lett* 2008; 29(2): 261-6.
- [10] Broad EM, Maughan RJ, Galloway SD. Effects of four weeks L-carnitine L-tartrate ingestion on substrate utilization during prolonged exercise. *Int J Sport Nutr Exerc Metab* 2005; 15(6): 665-79.
- [11] Barnett C, Costil DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ. Effect of L-carnitine supplementation on muscle and blood carnitine muscle content and lactate accumulation during high-intensity sprint cycling. *Int J Sport Nutr* 1994; 4(3): 280-8.
- [12] Layden JD, Malkova D, Nimmo MA. During exercise in the cold increased availability of plasma nonesterified fatty acids doas not affect the pattern of substrate oxidation. *Metabolism* 2004; 53(2): 203-8.

- [13] Everett-Grueter C, Edgerton DS, Donahue EP, Vaughan S, Chu CA, Sindelar DK, et al. The effect of an acute elevation of NEFA concentrations on glucagon-stimulated hepatic glucose output. *Am J Physiol Endocrinol Metab* 2006; 291(3): 449-59.
- [14] Siconolfi SF, Cullinane EM, Carleton RA, Thompson PD. Assessing VO2max in edipemiological studies: Modification of the Astrand- Ryhming test. *Med Sci Sports Exerc* 1982; 14(5): 335-8.
- [15] Stuessi C, Hofer P, Meier C, Boutellier U. L Carnitine and the recovery from exhaustive endurance exercise: a randomised, double-blind, placebo-controlled trial. *Eur J Appl Physiol* 2005; 95(5-6): 431-5.
- [16] Rantzau C, Christopher M, Alford FP.
 Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism. *J Appl Physiol* 2008; 104(2): 363-70.
- [17] Pitsiladis YP, Smith I, Maughan RJ. Increased fat availability enhances the capacity of trained individuals to perform prolonged exercise. *Med Sci Sports Exerc* 1999; 31(11): 1570-9.

- [18] van Baak MA, Mooij JM, Wijnen JA. Effect of increased plasma non-esterified fatty acid concenterations on endurance performance during beta-adrenoceptor blockade. *Int J Sports Med* 1993; 14(1): 2-8.
- [19] Matera M, Bellinghieri G, Costantino G, Santoro D, Calvani M, Savica V. History of Lcarnitine: implications for renal disease. *J Ren Nutr* 2003; 13(1): 2-14.
- [20] Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, et al. Effects of fat on insulinstimulated carbohydrate metabolism in normal men. *J Clin Invest* 1991; 88(3): 960-6.
- [21] Ivy JL, Costil DL, Van Handel PJ, Essij DA, Lower RW. Alteration in the lactate threshold with changes in substrate availability. *Int J Sports Med* 1981; 2(3): 139-42.
- [22] Ravussin E, Bogardus C, Scheidegger K, LaGrange B, Horton ED, Horton ES. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. *J Appl Physiol* 1986; 60(3): 893-900.
- [23] Cha YS, Choi SK, Suh H, Lee SN, Cho D, Li K. Effects of carnitine coingested caffeine on carnitine metabolism and endurance capacity in

athletes. *J Nutr Sci Vitaminol (Tokyo)* 2001; 47(6): 378-84.

- [24] Murosaki S, Lee TR, Muroyama K, Shin ES, Cho SY, Yamamoto Y, et al. A combination of caffeine, arginine, soy isoflavones, and L-carnitine enhances both lipolysis and fatty acid oxidation in 3T3-L1 and HepG2 cells in vitro and in KK mice in vivo. *J Nutr* 2007; 137(10): 2252-7.
- [25] Kraemer WJ, Volek JS, Dunn-Lewis C. Lcarnitine supplementation: influence upon physiological function. *Curr Sports Med Rep* 2008; 7(4): 218-23.
- [26] Odland LM, Heigenhauser GJ, Wong D, Hollidge-Horvat MG, Spriet LL. Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am J Physiol 1998; 274 (4Pt2): 894 -902.

The Effect of L-Carnitine and Heparin Supplementation on Plasma Glucose and Lactate Concentration During Exercise

M. Eizadi¹, A. Eghdami², D. Khorshidi ³, H. Doali³, F. Kiani³

Received: 17/02/09 Sent for Revision: 14/06/09 Received Revised Manuscript: 01/11/09 Accepted: 07/11/09

Background and Objectives: It has been reported that the increase of Free Fatty Acid (FFA) availability increases fat oxidation and decreases carbohydrate use in the skeletal muscles. This study was performed to determine the effect of L-carnitine supplementation plus heparin infusion on carbohydrate metabolism during aerobic exercise.

Materials and Methods: In this clinical trail study, 30 healthy untrained male students from Islamic Azad University of Saveh, in two groups of experimental and control, cycled according to Astrand protocol on two separate occasions in a week in two steps: 1) Exercise protocol without heparin infusion or L-carnitine ingestion for the experimental group and without lactose (placebo) for the control group. Step 2) Exercise protocol after heparin infusion and L-carnitine ingestion among the experimental group and infusion and ingestion of lactose (placebo) among the control group. Blood samples were drawn immediately following the two step exercises for the purpose of plasma glucose and L-carnitine concentration calculations. The data was analysed using T-test.

Results: The findings showed that heparin infusion and L-carnitine ingestion had no influence on plasma glucose concentrations (91 ± 6 versus 91 ± 7 mg/dL) in the experimental group. In addition, Lactate concentration did not change significantly in the experimental group (5.1 ± 0.61 versus 4.47 ± 0.59 mg/dL). Also the lactose use did not change the dependant variables in the control group.

Conclusion: Results indicated that increased FFA availability does not affect carbohydrate metabolism or endurance performance. Further studies are necessary to determine the effect of these supplementations on fatcarbohydrate metabolism or endurance exercise.

Key words: L-carnitine, Heparin, Glucose Metabolism, Exercise, Free Fatty Acid

Funding: This research was funded by Islamic Azad University, Saveh Branch.

Conflict of interest: None declared.

Ethical approval: The Ethical Committee of Islamic Azad University, Saveh Branch approved the study.

¹⁻ Academic Member, Dept. of Physical Education and Sport Sciences, Islamic Azad University, Saveh Branch, Iran

⁽Corresponding Author) Tel: (0255) 2221954, Fax: (0255)2221954, E-mail: izadimojtaba 2006@yahoo.com

²⁻ Academic Member, Dept. of Biochemistry, Islamic Azad University, Saveh Branch, Iran

³⁻ Academic Member, Dept. of Physical Education and Sport Sciences, Islamic Azad University, Saveh Branch, Iran