1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics 2024. CA: A Cancer Journal for Clinicians 2024; 74(1): 12-49.
2. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics 2025. CA: A Cancer Journal for Clinicians 2025; 75(1): 10.
3. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nature Reviews Clinical Oncology 2024; 21(5): 389-400.
4. Nguyen NTT, Nguyen TTT, Ge S, Liew RK, Nguyen DTC, Van Tran T. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery. Nanoscale Advances 2024.
5. Wang Y, Zeng M, Fan T, Jia M, Yin R, Xue J, et al. Biomimetic ZIF-8 nanoparticles: a novel approach for biomimetic drug delivery systems. International Journal of Nanomedicine 2024: 5523-44.
6. Parvaneh S, Pourmadadi M, Abdouss M, Pourmousavi SA, Yazdian F, Rahdar A, et al. Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules 2023; 241: 124566.
7. Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition 2019; 59(21): 3468-97.
8. Zhang Y, Jia Y, Li M, Hou La. Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports 2018; 8(1): 9597.
9. Zheng M, Liu S, Guan X, Xie Z. One-step synthesis of nanoscale zeolitic imidazolate frameworks with high curcumin loading for treatment of cervical cancer. ACS Applied Materials & Interfaces 2015; 7(40): 22181-7.
10. Dawes G, Fratila-Apachitei L, Mulia K, Apachitei I, Witkamp G-J, Duszczyk J. Size effect of PLGA spheres on drug loading efficiency and release profiles. Journal of Materials SCIENCE: Materials in Medicine 2009; 20: 1089-94.
11. Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. Green synthesis, characterization and applications of nanoparticles: Elsevier; 2019. p. 303-19.
12. Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology 2017; 12(2): Online: Apr 8-2017.
13. Cai Y, Guan J, Wang W, Wang L, Su J, Fang L. pH and light‐responsive polycaprolactone/curcumin@ zif‐8 composite films with enhanced antibacterial activity. Journal of Food Science 2021; 86(8): 3550-62.
14. Indira Priyadarsini K. Chemical and structural features influencing the biological activity of curcumin. Current Pharmaceutical Design 2013; 19(11): 2093-100.
15. Butova V, Budnyk A, Bulanova E, Lamberti C, Soldatov A.
16. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sciences 2017; 69: 13-21.
17. Yin X, Ran S, Cheng H, Zhang M, Sun W, Wan Y, et al. Polydopamine-modified ZIF-8 nanoparticles as a drug carrier for combined chemo-photothermal osteosarcoma therapy. Colloids and Surfaces B: Biointerfaces 2022; 216: 112507.
18. Song Y, Han S, Liu S, Sun R, Zhao L, Yan C. Biodegradable imprinted polymer based on ZIF-8/DOX-HA for synergistically targeting prostate cancer cells and controlled drug release with multiple responses. ACS Applied Materials & Interfaces 2023; 15(21): 25339-53.
19. Peng L, Qiu J, Liu L, Li X, Liu X, Zhang Y. Preparation of PEG/ZIF-8@ HF drug delivery system for melanoma treatment via oral administration. Drug Delivery 2022; 29(1): 1075-85.
20. Zhao H, Gong L, Wu H, Liu C, Liu Y, Xiao C, et al. Development of novel paclitaxel-loaded ZIF-8 metal-organic framework nanoparticles modified with peptide dimers and an evaluation of its inhibitory effect against prostate cancer cells. Pharmaceutics 2023; 15(7): 1874.